S-Procedure的基本形式及使用
理论
Lemma 1. ( S- Procedure[ 34] ) : Define the quadratic func- \textbf{Lemma 1. ( S- Procedure[ 34] ) : Define the quadratic func- } Lemma 1. ( S- Procedure[ 34] ) : Define the quadratic func-
tions w.r.t. x ∈ C M × 1 \mathbf{x}\in\mathbb{C}^M\times1 x∈CM×1 as
f m ( x ) = x H A m x + 2 R e { b m H x } + c m , m = 1 , 2 , f_m\left(\mathbf{x}\right)=\mathbf{x}^H\mathbf{A}_m\mathbf{x}+2Re\left\{\mathbf{b}_m^H\mathbf{x}\right\}+c_m,m=1,2, fm(x)=xHAmx+2Re{bmHx}+cm,m=1,2,
where A m ∈ C M × M , b m ∈ C M × 1 , a n d \mathbf{A}_m\in\mathbb{C}^{M\times M},\mathbf{b}_m\in\mathbb{C}^{M\times1},and Am∈CM×M,bm∈CM×1,and c m ∈ R . The c_m\in \mathbb{R} . \textit{The} cm∈R.The
c o n d i t i o n f 1 ≤ 0 ⇒ f 2 ≤ 0 h o l d s i f a n d o n l y i f t h e r e e x i s t s condition~f_1\leq0\Rightarrow f_2\leq0~holds~if~and~only~if~there~exists condition f1≤0⇒f2≤0 holds if and only if there exists
a variable ω ≥ 0 such that a\textit{ variable }\omega \geq 0\textit{ such that} a variable ω≥0 such that
(19)
ω [ A 1 b 1 b 1 H c 1 ] − [ A 2 b 2 b 2 H c 2 ] ⪰ 0 M + 1 . \omega\begin{bmatrix}\mathbf{A}_1&\mathbf{b}_1\\\mathbf{b}_1^H&c_1\end{bmatrix}-\begin{bmatrix}\mathbf{A}_2&\mathbf{b}_2\\\mathbf{b}_2^H&c_2\end{bmatrix}\succeq\mathbf{0}_{M+1}. ω[A1b1Hb1c1]−[A2b2Hb2c2]⪰0M+1.
理论重述
Let f ( x ) f(x) f(x) and g ( x ) g(x) g(x) be two quadratic forms defined as:
f ( x ) = x H A x + 2 ℜ ( b H x ) + c f(x) = x^H A x + 2 \Re(b^H x) + c f(x)=xHAx+2ℜ(bHx)+c
and
g ( x ) = x H D x + 2 ℜ ( e H x ) + f g(x) = x^H D x + 2 \Re(e^H x) + f g(x)=xHDx+2ℜ(eHx)+f
where A , D ∈ C n × n A, D \in \mathbb{C}^{n \times n} A,D∈Cn×n are Hermitian matrices, b , e ∈ C n b, e \in \mathbb{C}^n b,e∈Cn are complex vectors, and c , f ∈ R c, f \in \mathbb{R} c,f∈R are real constants. The superscript H H H denotes the Hermitian (conjugate transpose) of the matrix or vector.
The implication
f ( x ) ≤ 0 ⟹ g ( x ) ≤ 0 f(x) \leq 0 \implies g(x) \leq 0 f(x)≤0⟹g(x)≤0
holds if and only if there exists a scalar λ ≥ 0 \lambda \geq 0 λ≥0 such that:
f ( x ) + λ g ( x ) ≤ 0 f(x) + \lambda g(x) \leq 0 f(x)+λg(x)≤0
or equivalently:
x H ( A + λ D ) x + 2 ℜ ( ( b + λ e ) H x ) + ( c + λ f ) ≤ 0 for all x . x^H (A + \lambda D) x + 2 \Re \left( (b + \lambda e)^H x \right) + (c + \lambda f) \leq 0 \quad \text{for all } x. xH(A+λD)x+2ℜ((b+λe)Hx)+(c+λf)≤0for all x.
This condition can be rewritten as the following matrix inequality:
( A + λ D b + λ e ( b + λ e ) H c + λ f ) ⪰ 0 \begin{pmatrix} A + \lambda D & b + \lambda e \\ (b + \lambda e)^H & c + \lambda f \end{pmatrix} \succeq 0 (A+λD(b+λe)Hb+λec+λf)⪰0
where ⪰ 0 \succeq 0 ⪰0 denotes that the matrix is positive semidefinite (PSD).
Thus, the S-Procedure states that if such a non-negative λ \lambda λ exists, then the implication f ( x ) ≤ 0 ⟹ g ( x ) ≤ 0 f(x) \leq 0 \implies g(x) \leq 0 f(x)≤0⟹g(x)≤0 holds.
实际案例
已知
Δ h H Δ h ≤ a \Delta\mathbf{h}^H \Delta\mathbf{h} \leq a ΔhHΔh≤a
如何根据S-Procedure 理论把下列形式转化成线性矩阵不等式呢
g ( Δ h ) = Δ h H D Δ h + 2 ℜ ( h H D Δ h ) + h H D h − z ≥ 0 g(\Delta\mathbf{h}) = \Delta\mathbf{h}^H \mathbf{D} \Delta\mathbf{h} + 2 \Re(\mathbf{h}^H \mathbf{D} \Delta\mathbf{h}) + \mathbf{h}^H \mathbf{D} \mathbf{h} - z \geq 0 g(Δh)=ΔhHDΔh+2ℜ(hHDΔh)+hHDh−z≥0
实际案例详细说明
\section*{S-Procedure 推导}
\textbf{已知条件}
-
不等式 f 1 ( Δ h ) f_1(\Delta \mathbf{h}) f1(Δh):
f 1 ( Δ h ) = Δ h H Δ h − a ≤ 0 f_1(\Delta \mathbf{h}) = \Delta \mathbf{h}^H \Delta \mathbf{h} - a \leq 0 f1(Δh)=ΔhHΔh−a≤0
这表示:
Δ h H Δ h ≤ a \Delta \mathbf{h}^H \Delta \mathbf{h} \leq a ΔhHΔh≤a -
需要证明的不等式 f 2 ( Δ h ) f_2(\Delta \mathbf{h}) f2(Δh):
f 2 ( Δ h ) = − ( Δ h H D Δ h + 2 ℜ ( h H D Δ h ) + h H D h − z ) ≤ 0 f_2(\Delta \mathbf{h}) = - \left( \Delta \mathbf{h}^H \mathbf{D} \Delta \mathbf{h} + 2 \Re (\mathbf{h}^H \mathbf{D} \Delta \mathbf{h}) + \mathbf{h}^H \mathbf{D} \mathbf{h} - z \right) \leq 0 f2(Δh)=−(ΔhHDΔh+2ℜ(hHDΔh)+hHDh−z)≤0
等价于:
Δ h H D Δ h + 2 ℜ ( h H D Δ h ) + h H D h − z ≥ 0 \Delta \mathbf{h}^H \mathbf{D} \Delta \mathbf{h} + 2 \Re (\mathbf{h}^H \mathbf{D} \Delta \mathbf{h}) + \mathbf{h}^H \mathbf{D} \mathbf{h} - z \geq 0 ΔhHDΔh+2ℜ(hHDΔh)+hHDh−z≥0
\textbf{应用 S-Procedure}
为了应用 S-Procedure,我们需要构造两个二次型 f 1 f_1 f1 和 f 2 f_2 f2 的矩阵形式,并构造相应的线性矩阵不等式 (LMI)。
-
构造 f 1 ( Δ h ) f_1(\Delta \mathbf{h}) f1(Δh) 的矩阵形式:
f 1 ( Δ h ) = Δ h H Δ h − a f_1(\Delta \mathbf{h}) = \Delta \mathbf{h}^H \Delta \mathbf{h} - a f1(Δh)=ΔhHΔh−a
其矩阵形式为:
[ I 0 0 − a ] \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & -a \end{bmatrix} [I00−a] -
构造 f 2 ( Δ h ) f_2(\Delta \mathbf{h}) f2(Δh) 的矩阵形式:
f 2 ( Δ h ) = − ( Δ h H D Δ h + 2 ℜ ( h H D Δ h ) + h H D h − z ) f_2(\Delta \mathbf{h}) = - \left( \Delta \mathbf{h}^H \mathbf{D} \Delta \mathbf{h} + 2 \Re (\mathbf{h}^H \mathbf{D} \Delta \mathbf{h}) + \mathbf{h}^H \mathbf{D} \mathbf{h} - z \right) f2(Δh)=−(ΔhHDΔh+2ℜ(hHDΔh)+hHDh−z)
可以简化为:
f 2 ( Δ h ) = − Δ h H D Δ h − 2 ℜ ( h H D Δ h ) − ( h H D h − z ) f_2(\Delta \mathbf{h}) = - \Delta \mathbf{h}^H \mathbf{D} \Delta \mathbf{h} - 2 \Re (\mathbf{h}^H \mathbf{D} \Delta \mathbf{h}) - (\mathbf{h}^H \mathbf{D} \mathbf{h} - z) f2(Δh)=−ΔhHDΔh−2ℜ(hHDΔh)−(hHDh−z)
其矩阵形式为:
[ − D − D h − h H D − ( h H D h − z ) ] \begin{bmatrix} -\mathbf{D} & -\mathbf{D} \mathbf{h} \\ -\mathbf{h}^H \mathbf{D} & -(\mathbf{h}^H \mathbf{D} \mathbf{h} - z) \end{bmatrix} [−D−hHD−Dh−(hHDh−z)] -
构造 S-Procedure 矩阵:
根据 S-Procedure,存在 μ ≥ 0 \mu \geq 0 μ≥0 使得:
μ [ I 0 0 − a ] − [ − D − D h − h H D − ( h H D h − z ) ] ⪰ 0 \mu \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & -a \end{bmatrix} - \begin{bmatrix} -\mathbf{D} & -\mathbf{D} \mathbf{h} \\ -\mathbf{h}^H \mathbf{D} & -(\mathbf{h}^H \mathbf{D} \mathbf{h} - z) \end{bmatrix} \succeq \mathbf{0} μ[I00−a]−[−D−hHD−Dh−(hHDh−z)]⪰0
进一步简化为:
[ μ I + D D h h H D − μ a + ( h H D h − z ) ] ⪰ 0 \begin{bmatrix} \mu \mathbf{I} + \mathbf{D} & \mathbf{D} \mathbf{h} \\ \mathbf{h}^H \mathbf{D} & -\mu a + (\mathbf{h}^H \mathbf{D} \mathbf{h} - z) \end{bmatrix} \succeq \mathbf{0} [μI+DhHDDh−μa+(hHDh−z)]⪰0
相关文章:

S-Procedure的基本形式及使用
理论 Lemma 1. ( S- Procedure[ 34] ) : Define the quadratic func- \textbf{Lemma 1. ( S- Procedure[ 34] ) : Define the quadratic func- } Lemma 1. ( S- Procedure[ 34] ) : Define the quadratic func- tions w.r.t. x ∈ C M 1 \mathbf{x}\in\mathbb{C}^M\times1 x…...

free -h 查看内存free空间不足
free空间不足 大部分被buff/cache占用 解决办法一: 手动释放缓存 释放页缓存 sudo sync; sudo sysctl -w vm.drop_caches1 释放目录项和inode缓存 sudo sync; sudo sysctl -w vm.drop_caches2 释放所有缓存(页缓存、目录项和inode缓存) sudo sync…...
rust学习笔记
参考资料:https://doc.rust-lang.org/book/ch01-02-hello-world.html 一、 编译与运行 在 Rust 中,编译和运行代码的常用命令是使用 cargo,这是 Rust 的包管理和构建工具。以下是使用 cargo 和 rustc(Rust 编译器)的具…...

【有啥问啥】复习变分下界即证据下界(Evidence Lower Bound, ELBO):原理与应用
复习变分下界即证据下界(Evidence Lower Bound, ELBO):原理与应用 变分下界(Variational Lower Bound),也称为“证据下界”(Evidence Lower Bound, ELBO),是概率模型中的…...

Linux shell编程学习笔记78:cpio命令——文件和目录归档工具(上)
0 前言 在Linux系统中,除了tar命令,我们还可以使用cpio命令来进行文件和目录的归档。 1 cpio命令的功能,帮助信息,格式,选项和参数说明 1.1 cpio命令的功能 cpio 名字来自 "copy in, copy out"…...
为什么在 JSON 序列化中不使用 transient
有些小伙伴发现了,明明在返回的实体类中指定了属性为transient。为什么前端得到的返回json中还是有这个属性的值? 类: private String name; private transient String password;返回结果: { name:"刘大大", password:…...

K8S - Volume - NFS 卷的简介和使用
在之前的文章里已经介绍了 K8S 中两个简单卷类型 hostpath 和 emptydir k8s - Volume 简介和HostPath的使用 K8S - Emptydir - 取代ELK 使用fluentd 构建logging saidcar 但是这两种卷都有同1个限制, 就是依赖于 k8s nodes的空间 如果某个service pod中需要的vol…...

IO模型---BIO、NIO、IO多路复用、AIO详解
本篇将想给详细解释一下什么是BIO、NIO、IO多路复用以及AIO~ 同步的阻塞(BIO)和非阻塞(NIO)的区别 BIO:线程发来IO请求后,一直阻塞着IO线程,需要缓冲区这边数据准备好之后,才会进行下一步的操作。 举个🌰࿱…...

蓝桥杯真题——约翰的牛奶
输入样例: 8 9 10 输出样例: 1 2 8 9 10 本题是宽搜的模版题,不论怎么倒牛奶,A,B,C 桶里的牛奶可以看做一个三元点集 我们只要找到A桶是空的,B,C桶中的状态即可 #include <iostream> #include <cstring…...

单机docker-compose部署minio
单机多副本docker-compose部署minio 简单介绍 如果服务器有限可以单机挂载多硬盘实现多副本容错(生产不推荐) 部署好的文件状态 有两个重要文件 docker-compose.yaml和nginx.conf docker-compose.yaml是docker部署容器的配置信息包括4个minio和1个ng…...

Winform实现弹出定时框功能
1、程序 private void TimeDialogInitialize(){for(int i1; i<30;i){cbbTimeDialog.Items.Add(i);}}private void cbbTimeDialog_SelectedIndexChanged(object sender, EventArgs e){foreach(int i in cbbTimeDialog.Items){if(cbbTimeDialog.SelectedItem!null &&…...

【机器学习(四)】分类和回归任务-梯度提升决策树(GBDT)-Sentosa_DSML社区版
文章目录 一、算法概念一、算法原理(一) GBDT 及负梯度拟合原理(二) GBDT 回归和分类1、GBDT回归1、GBDT分类二元分类多元分类 (三)损失函数1、回归问题的损失函数2. 分类问题的损失函数: 三、G…...

Mini-Omni 语言模型在流式传输中边思考边听说应用
引入简介 Mini-Omni 是一个开源的多模态大语言模型,能够在思考的同时进行听觉和语言交流。它具有实时端到端语音输入和流媒体音频输出的对话能力。 语言模型的最新进展取得了显著突破。GPT-4o 作为一个新的里程碑,实现了与人类的实时对话,展示了接近人类的自然流畅度。为了…...
vue devtools的使用
vue devtools的使用 Vue Devtools 是一个强大的浏览器扩展,旨在帮助你调试和开发 Vue.js 应用。它支持 Chrome 和 Firefox 浏览器,并提供了一些工具和功能,可以让你更轻松地查看和调试 Vue 应用的状态和行为。以下是如何安装和使用 Vue Devtools 的详细指南。 安装 Vue De…...

无人机培训:无人机维护保养技术详解
随着无人机技术的飞速发展,其在航拍、农业、救援、环境监测等领域的应用日益广泛。然而,要确保无人机安全、高效地执行任务,定期的维护保养至关重要。本文将深入解析无人机维护保养的核心技术,涵盖基础构造理解、清洁与防尘、电机…...
Mac 创建 Python 虚拟环境
在 macOS 上,您可以使用以下步骤使用 virtualenv 创建虚拟环境: 首先,确保您已经安装了 Python 和 virtualenv。您可以在终端中运行以下命令来检查它们是否已安装: python --version virtualenv --version如果这些命令没有找到&am…...

安卓玩机工具-----无需root权限 卸载 禁用 删除当前机型app应用 ADB玩机工具
ADB玩机工具 ADB AppControl是很实用的安卓手机应用管理工具,无需root权限,通过usb连接电脑后,可以很方便的进行应用程序安装与卸载,还支持提取手机应用apk文件到电脑上,此外还有手机系统垃圾清理、上传文件等…...

中国科技统计年鉴1991-2020年
(数据收集)中国科技统计年鉴1991-2020年.Excel格式资源-CSDN文库https://download.csdn.net/download/2401_84585615/89475658 《中国科技统计年鉴》是由国家统计局社会科技和文化产业统计司与科学技术部战略规划司共同编辑的官方统计资料书,…...
OpenAI / GPT-4o:Python 返回结构化 / JSON 输出
在调用 OpenAI(比如:GPT-4o)接口时,希望返回的结果是能够在后续任务中自动化处理的结构化 / JSON 输出。GPT 版本:gpt-4o-2024-08-06,提供了这样的功能。 目标:从非结构化输入到结构化数据&…...

通信工程学习:什么是EDFA掺铒光纤放大器
EDFA:掺铒光纤放大器 EDFA,即掺铒光纤放大器(Erbium-Doped Fiber Amplifier),是一种在光纤通信中广泛使用的光放大器件。以下是对EDFA的详细解释: 一、定义与基本原理 EDFA是在石英光纤中掺入少量的稀土元…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...

3.3.1_1 检错编码(奇偶校验码)
从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...

visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...

云原生玩法三问:构建自定义开发环境
云原生玩法三问:构建自定义开发环境 引言 临时运维一个古董项目,无文档,无环境,无交接人,俗称三无。 运行设备的环境老,本地环境版本高,ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...

C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

springboot整合VUE之在线教育管理系统简介
可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...

Ubuntu系统多网卡多相机IP设置方法
目录 1、硬件情况 2、如何设置网卡和相机IP 2.1 万兆网卡连接交换机,交换机再连相机 2.1.1 网卡设置 2.1.2 相机设置 2.3 万兆网卡直连相机 1、硬件情况 2个网卡n个相机 电脑系统信息,系统版本:Ubuntu22.04.5 LTS;内核版本…...

五子棋测试用例
一.项目背景 1.1 项目简介 传统棋类文化的推广 五子棋是一种古老的棋类游戏,有着深厚的文化底蕴。通过将五子棋制作成网页游戏,可以让更多的人了解和接触到这一传统棋类文化。无论是国内还是国外的玩家,都可以通过网页五子棋感受到东方棋类…...