当前位置: 首页 > news >正文

Python 数学建模——Vikor 多标准决策方法

文章目录

    • 前言
    • 原理
    • 步骤
    • 代码实例

前言

  Vikor 归根到底其实属于一种综合评价方法。说到综合评价方法,TOPSIS(结合熵权法使用)、灰色关联度分析、秩和比法等方法你应该耳熟能详。Vikor 未必比这些方法更出色,但是可以拓展我们的视野。接下来先介绍 Vikor 方法的原理,再结合一个例子使用 Vikor 方法进行 Python 建模。

原理

  Vikor 方法是一种基于多个标准,选择最好的(折中的)策略的方法。非常类似于 TOPSIS 综合评价方法
  多标准决策(MCDM)问题描述为:现有 n n n 个可行方案,每个方案均有 m m m 个指标,用 f i j f_{ij} fij 表示第 i i i 个方案的第 j j j 个指标。现在要求出多准则意义上的最佳(折衷)解决方案。例如,现在有 A 1 − A 4 A_1-A_4 A1A4 四架飞机(即 n = 4 n=4 n=4),每架飞机有 m = 6 m=6 m=6 个指标,如下表所示,请你选出多准则意义上最好的飞机。

飞机编号最大速度飞行半径最大负载费用可靠性灵敏度
A 1 A_1 A1 2.0 2.0 2.0 1500 1500 1500 20000 20000 20000 5500000 5500000 5500000 0.5 0.5 0.5 1 1 1
A 2 A_2 A2 2.5 2.5 2.5 2700 2700 2700 18000 18000 18000 6500000 6500000 6500000 0.3 0.3 0.3 0.5 0.5 0.5
A 3 A_3 A3 1.8 1.8 1.8 2000 2000 2000 21000 21000 21000 4500000 4500000 4500000 0.7 0.7 0.7 0.7 0.7 0.7
A 4 A_4 A4 2.2 2.2 2.2 1800 1800 1800 20000 20000 20000 5000000 5000000 5000000 0.5 0.5 0.5 0.5 0.5 0.5

这是司守奎等的《Python 数学实验与建模》上的一个例题。

步骤

  Vikor 评价法的步骤如下:

  1. 对每个指标 f i j f_{ij} fij 进行处理,使得处理后的指标都是极大型指标,仍用 f i j f_{ij} fij 表示。无需归一化、无量纲化。

极大型指标指的是值越大越好的指标,如效率、产能、可靠性等,又称“效益型指标”。相对地,极小型指标指的是值越小越好的指标,如能耗、费用等,又称“成本性指标”。还有一类中间型指标,其值太大太小都不好,位于一个区间才合适,例如人的 BMI。

  1. 对每个指标确定正理想解 f j + = max ⁡ 1 ≤ i ≤ n ( f i j ) {{f}_{j}^{+}}={\max\limits_{1\le i\le n}(}{{f}_{ij}}) fj+=1inmax(fij) ,以及负理想解 f j − = min ⁡ 1 ≤ i ≤ n ( f i j ) {{f}_{j}^{-}}={\min\limits_{1\le i\le n}(}{{f}_{ij}}) fj=1inmin(fij)
  2. 对于每个方案,计算 S S S 值(综合距离,表示方案与正理想解之间的综合距离)和 R R R 值(个体最大距离,表示方案在最不利标准下与正理想解之间的距离): S i = ∑ j = 1 m w j ( f j + − f i j ) f j + − f j − S_i=\sum_{j=1}^{m}{\cfrac{w_j(f_j^+-f_{ij})}{f_j^+-f_j^-}} Si=j=1mfj+fjwj(fj+fij) R i = max ⁡ 1 ≤ j ≤ m ( w j ( f j + − f i j ) f j + − f j − ) R_i=\max\limits_{1\leq j\leq m}\left(\cfrac{w_j(f_j^+-f_{ij})}{f_j^+-f_j^-}\right) Ri=1jmmax(fj+fjwj(fj+fij))这里 w j w_j wj 是给每个标注取的权重,默认情况下那么都取 1 / m 1/m 1/m
  3. 计算每个方案的 Q Q Q 值,这个值是综合所有方案的 S S S 值与 R R R 值得出的结果: Q i = v × S i − S + S − − S + + ( 1 − v ) × R i − R + R − − R + {{Q}_{i}}=v\times \frac{{{S}_{i}}-{{S}^{+}}}{{{S}^{-}}-{{S}^{+}}}+(1-v)\times \frac{{{R}_{i}}-{{R}^{+}}}{{{R}^{-}}-{{R}^{+}}} Qi=v×SS+SiS++(1v)×RR+RiR+其中,
    • S + = min ⁡ 1 ≤ i ≤ n ( S i ) S^+=\min\limits_{1\leq i\leq n}(S_i) S+=1inmin(Si) S − = max ⁡ 1 ≤ i ≤ n ( S i ) S^-=\max\limits_{1\leq i\leq n}(S_i) S=1inmax(Si) R + = min ⁡ 1 ≤ i ≤ n ( R i ) R^+=\min\limits_{1\leq i\leq n}(R_i) R+=1inmin(Ri) R − = max ⁡ 1 ≤ i ≤ n ( R i ) R^-=\max\limits_{1\leq i\leq n}(R_i) R=1inmax(Ri)
    • v v v 是一个在 0 0 0 1 1 1 之间的权重,通常取 0.5 0.5 0.5,表示 S S S 值和 R R R 值的平衡。当 v > 0.5 v>0.5 v>0.5 时,表示根据最大群体效用的决策机制进行决策;当 v < 0.5 v<0.5 v<0.5 时,表示根据最小个体遗憾的决策机制进行决策。数学建模时,这个 v v v 可能适合拿来灵敏度分析。
  4. 对这个 Q Q Q 值进行升序排序,就是各个方案的最终排名。一般取 Q Q Q 值最小的为最优。

参考文献:VIKOR方法_vikor方法简介-CSDN博客

代码实例

  就使用上面评价飞机的那个例子。首先观察到费用是一个极小型指标,需要极大化。书上直接给出了使用比例变换法将所有指标极大归一化的结果,因此下面的代码中直接使用这个结果:

import pandas as pd
import numpy as np
from sklearn import preprocessing
import matplotlib.pyplot as plt# 这个就是极大归一化后的数据
data = pd.DataFrame([[0.8,0.5556,0.9524,0.8182,0.7143,1],[1,1,0.8571,0.6923,0.4286,0.5],[0.72,0.7407,1,1,1,0.7],[0.88,0.6667,0.9524,0.9,0.7143,0.5]])# 确定正负理想解
f_best = data.max(axis = 0)
f_worst = data.min(axis = 0)
# 计算 S 和 R
S = []
R = []
for i in range(data.index.size):S.append(sum((f_best - data.iloc[i,:])/(f_best - f_worst))/data.columns.size)R.append(max((f_best - data.iloc[i,:])/(f_best - f_worst))/data.columns.size)# 计算 Q
S = np.array(S)
R = np.array(R)
qq = [[],[],[],[]]
v_arr = np.linspace(0,1,1000)
for v in v_arr:Q = 0if(S.max() - S.min() != 0):Q += v * (S - S.min()) / (S.max() - S.min())if(R.max() - R.min() != 0):Q += (1 - v) * (R - R.min()) / (R.max() - R.min())for i in range(len(Q)):qq[i].append(Q[i])# 作图部分
plt.rc('text',usetex = True)
plt.plot(v_arr,qq[0],label = '$A_1$')
plt.plot(v_arr,qq[1],label = '$A_2$')
plt.plot(v_arr,qq[2],label = '$A_3$')
plt.plot(v_arr,qq[3],label = '$A_4$')
plt.xlabel('$v$')
plt.ylabel('$Q_i$')
plt.legend()
plt.show()

  上面的代码,我尝试了 ( 0 , 1 ) (0,1) (0,1) 中的许多 v v v 值,作出了 Q i ( i = 1 , 2 , 3 , 4 ) Q_i(i=1,2,3,4) Qi(i=1,2,3,4) 关于 v v v 的图线,如下图所示:

  可以看出,无论 v v v 怎么选,结果都是固定的: A 3 > A 1 > A 4 > A 2 {{A}_{3}}>{{A}_{1}}>{{A}_{4}}>{{A}_{2}} A3>A1>A4>A2。这和熵权法的结果一样,而 TOPSIS 的结果是 A 3 > A 1 > A 2 > A 4 {{A}_{3}}>{{A}_{1}}>{{A}_{2}}>{{A}_{4}} A3>A1>A2>A4。总而言之 Vikor 还是个比较不错的方法。

相关文章:

Python 数学建模——Vikor 多标准决策方法

文章目录 前言原理步骤代码实例 前言 Vikor 归根到底其实属于一种综合评价方法。说到综合评价方法&#xff0c;TOPSIS&#xff08;结合熵权法使用&#xff09;、灰色关联度分析、秩和比法等方法你应该耳熟能详。Vikor 未必比这些方法更出色&#xff0c;但是可以拓展我们的视野。…...

计算机网络八股总结

这里写目录标题 网络模型划分&#xff08;五层和七层&#xff09;及每一层的功能五层网络模型七层网络模型&#xff08;OSI模型&#xff09; 三次握手和四次挥手具体过程及原因三次握手四次挥手 TCP/IP协议组成UDP协议与TCP/IP协议的区别Http协议相关知识网络地址&#xff0c;子…...

AMD CMD UMD CommonJs ESM 的历史和区别

这几个东西都是用于定义模块规范的。有些资料会提及到这些概念&#xff0c;不理清楚非常容易困惑。 ESM&#xff08;ES Module&#xff09; 这个实际上我们是最熟悉的&#xff0c;就是ES6的模块功能。出的最晚&#xff0c;因为是官方出品&#xff0c;所以大势所趋&#xff0c…...

人工智能数据基础之微积分入门-学习篇

目录 导数概念常见导数和激活导数python代码绘制激活函数微分概念和法则、积分概念微积分切线切面代码生成案例链式求导法则反向传播算法(重要) 一、概念 二、常见导数及激活导数 常见激活函数及其导数公式&#xff1a; 在神经网络中&#xff0c;激活函数用于引入非线性因素&…...

【PSINS】ZUPT代码解析(PSINS_SINS_ZUPT)|MATLAB

这篇文章写关于PSINS_SINS_ZUPT的相关解析。【值得注意的是】:例程里面给的这个m文件的代码,并没有使用ZUPT的相关技术,只是一个速度观测的EKF 简述程序作用 主要作用是进行基于零速更新(ZUPT)的惯性导航系统(INS)仿真和滤波 什么是ZUPT ZUPT是Zero Velocity Update(…...

多态(上)【C++】

文章目录 多态的概念多态的实现多态产生的条件什么是虚函数&#xff1f;虚函数的重写和协变重写协变 析构函数的重写为什么有必要要让析构函数构成重写&#xff1f; 多态的概念 C中的多态是面向对象编程&#xff08;OOP&#xff09;的一个核心特性&#xff0c;指的是同一个接口…...

如何驱动一枚30年前的音源芯片,YMF288驱动手记 Part2

一些问题 在上一篇里面虽然策划了想要驱动YMF288所需要做的事情以及目标。但是&#xff0c;在板子打出来后&#xff0c;我在进一步的研究中&#xff0c;发现我犯了个错误&#xff0c;那就是YMF288并不是使用现在很多轻量化的嵌入式&#xff0c;比如ESP32常用的I2S协议的&#x…...

yarn webpack脚手架 react+ts搭建项目

安装 Yarn 首先&#xff0c;确保你已经安装了 Node.js 和 Yarn。如果还没有安装 Yarn&#xff0c;可以通过以下命令安装&#xff1a; npm install -g yarn创建项目 使用 create-react-app 脚手架创建一个带有 TypeScript 的项目&#xff0c;node更新到最新版&#xff0c;并指定…...

防蓝光护眼灯有用吗?五款防蓝光效果好的护眼台灯推荐

现在孩子的很多兴趣班和课后辅导班都是在线上举行&#xff0c;通常对着手机电脑长时间。电子产品有大量蓝光和辐射&#xff0c;会伤害到孩子的眼睛。但为了学习&#xff0c;也是没办法。护眼台灯的出现可以让孩子们的眼睛得到保护&#xff0c;防止蓝光对眼睛的伤害。防蓝光护眼…...

Mac使用Elasticsearch

下载 Past Releases of Elastic Stack Software | Elastic 解压tar -xzvf elasticsearch-8.15.1-darwin-x86_64.tar.gz 修改配置文件config/elasticsearch.yml xpack.security.enabled: false xpack.security.http.ssl: enabled: false 切换目录 cd elasticsearch-8.15.1/…...

DevOps -CI/CD 与自动化部署

DevOps - CI/CD 与自动化部署详解 DevOps 是一种结合开发&#xff08;Development&#xff09;与运维&#xff08;Operations&#xff09;的方法论&#xff0c;旨在通过工具和文化变革&#xff0c;促进软件开发和运维之间的协作&#xff0c;提升软件交付的效率、质量和稳定性。…...

单体架构系统是不是已经彻底死亡?

单体架构系统并未“彻底死亡”&#xff0c;尽管在复杂和大规模的应用场景中&#xff0c;它可能不再是首选的架构模式。单体架构系统&#xff0c;也称为巨石系统&#xff08;Monolithic&#xff09;&#xff0c;在软件发展过程中是最广泛的架构风格之一&#xff0c;出现时间最早…...

mathorcup发邮件:参赛必看邮件撰写技巧?

mathorcup发邮件的注意事项&#xff1f;如何使用mathorcup发信&#xff1f; 无论是提交参赛作品、咨询比赛规则&#xff0c;还是与组委会沟通&#xff0c;一封清晰、专业的邮件都能为你赢得更多机会。AokSend将为你详细介绍mathorcup发邮件的撰写技巧&#xff0c;帮助你在比赛…...

ESP01烧入AT出厂固件

ESP01是一种常见的WIFI模块&#xff0c;其核心是esp8266&#xff0c;常用于给主控拓展WIFI功能&#xff0c;因其体积较小、集成度高、造价便宜&#xff0c;常受到消费者喜爱&#xff0c;ESP01常用的开发方式有两种&#xff0c;一种是利用基于Arduino框架作为独立设备开发&#…...

Qt 开发:深入详解 Qt 的信号与槽机制——彻底搞懂QT信号与槽

一、概念 Qt 的信号与槽&#xff08;Signals and Slots&#xff09;机制是一个用于对象间通信的核心特性。这个机制使得对象能以松散耦合的方式进行通信&#xff0c;从而提升了代码的模块化和可维护性。 信号&#xff08;Signal&#xff09;&#xff1a;对象状态的变化或事件…...

民间故事推广系统小程序的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;用户管理&#xff0c;民族文化管理&#xff0c;节日类型管理&#xff0c;传统节日管理&#xff0c;故事类型管理&#xff0c;民间故事管理&#xff0c;系统管理 微信端账号功能包括&#xff1a;系统首…...

关于武汉芯景科技有限公司的IIC缓冲器芯片XJ4307开发指南(兼容LTC4307)

一、芯片引脚介绍 1.芯片引脚 2.引脚描述 二、系统结构图 三、功能描述 1.总线超时&#xff0c;自动断开连接 当 SDAOUT 或 SCLOUT 为低电平时&#xff0c;将启动内部定时器。定时器仅在相应输入变为高电平时重置。如果在 30ms &#xff08;典型值&#xff09; 内没有变为高…...

C++ 异常

这里写目录标题 1.C语言传统的处理错误的方式2.C异常概念3.异常的用法3.1 异常的抛出和捕获3.2 异常的重新抛出3.3异常安全3.4 异常规范 4.自定义异常体系5.标准库异常体系6.异常的优缺点 1.C语言传统的处理错误的方式 传统的错误处理机制&#xff1a; 1. 终止程序&#xff0c…...

ST官方 VSCode 插件安装及配置工程参考

写在前头 VSCode的用法和插件是月初参加ST官方北京站举办的线下培训中&#xff0c;厂家AE工程师给我们讲的&#xff0c;不同于已经很多人用的&#xff08;并且一直在吵的&#xff09;keil assistant什么的&#xff0c;用的是CMake编译&#xff0c;抛弃了原有的keil&#xff0c;…...

使用Pandas读取和写入数据库的Python函数实现

使用Pandas读取和写入数据库的Python函数实现 Pandas是一个强大的数据处理和分析库,广泛应用于数据科学和机器学习领域。结合数据库操作,Pandas可以极大地简化数据的读取和写入过程。本文将详细介绍如何使用Pandas实现读取和写入数据库的函数,涵盖数据库连接、数据读取、数…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造&#xff0c;完美适配AGV和无人叉车。同时&#xff0c;集成以太网与语音合成技术&#xff0c;为各类高级系统&#xff08;如MES、调度系统、库位管理、立库等&#xff09;提供高效便捷的语音交互体验。 L…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲

文章目录 前言第一部分&#xff1a;体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分&#xff1a;体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...