当前位置: 首页 > news >正文

OpenCV高阶操作

在图像处理与计算机视觉领域,OpenCV(Open Source Computer Vision Library)无疑是最为强大且广泛使用的工具之一。从基础的图像读取、

1.图片的上下,采样

下采样(Downsampling)

下采样通常用于减小图像的尺寸,从而减少图像中的像素数。这个过程可以通过多种方法实现,但最常见的是通过图像金字塔中的pyrDown函数(在OpenCV中)或其他类似的滤波器(如平均池化、最大池化等)。pyrDown函数基于高斯金字塔的概念,通过平滑和子采样(即每隔一行和一列取一个像素)来减小图像尺寸。下采样通常用于特征提取、图像压缩或预处理阶段以减少计算量。

上采样(Upsampling)

上采样是下采样的逆过程,用于增加图像的尺寸,从而增加图像中的像素数。然而,简单地插入新的像素(如最近邻插值)通常会导致图像质量下降,因为新插入的像素值可能是未经处理的或基于简单规则的(如直接复制最近的像素值)。因此,更复杂的插值方法(如双线性插值、双三次插值)或上采样算法(如OpenCV中的pyrUp函数)被用来生成更平滑、更自然的图像。pyrUp函数也是基于图像金字塔的概念,但它试图通过插值和放大来重建原始图像的细节。然而,需要注意的是,由于上采样过程中引入了新的像素值,因此通常无法完全恢复到原始图像的精确像素值。

实例:

import cv2
face = cv2.imread('kele.png',cv2.IMREAD_GRAYSCALE)
cv2.imshow('face',face)
cv2.waitKey(0)
face_down_1 = cv2.pyrDown(face)
cv2.imshow('face1',face_down_1)
cv2.waitKey(0)
face_down_2 = cv2.pyrDown(face_down_1)
cv2.imshow('face2',face_down_2)
cv2.waitKey(0)
#
face_up_1 = cv2.pyrUp(face)
cv2.imshow('up1',face_up_1)
cv2.waitKey(0)
face_up_2 = cv2.pyrUp(face_up_1)
cv2.imshow('up2',face_up_2)
cv2.waitKey(0)

2.图像直方图绘制

  1. 灰度图像直方图
    • 使用 cv2.calcHist 计算灰度图像的直方图。
    • 使用 plt.plot 绘制直方图,并设置图形标题、x轴和y轴标签。
  2. 彩色图像直方图
    • 读取彩色图像。
    • 遍历蓝色、绿色和红色通道。
    • 对每个颜色通道使用 cv2.calcHist 计算直方图。
    • 使用 plt.plot 绘制每个通道的直方图,并使用 plt.setp 隐藏x轴标签以避免重叠。
    • 设置图形标题、y轴标签和图例。
phone = cv2.imread('../day07/phone.png', cv2.IMREAD_GRAYSCALE)a = phone.ravel()
# 参数解释:
# - a:一维数组,即像的像素值组成的数组。
# - bins=256:指定直方图的条数,即灰度级的数量。
plt.show()
phone_hist = cv2.calcHist([phone], [0], None, [16], [0, 256])
plt.plot(phone_hist)  # 使用calcHist的值绘制曲线图
plt.show()img = cv2.imread('../day07/phone.png')
color = ('b','g','r')
for i, col in enumerate(color):histr = cv2.calcHist([img], [i], None,[256], [0, 256])plt.plot(histr, color=col)plt.show()

相关文章:

OpenCV高阶操作

在图像处理与计算机视觉领域,OpenCV(Open Source Computer Vision Library)无疑是最为强大且广泛使用的工具之一。从基础的图像读取、 1.图片的上下,采样 下采样(Downsampling) 下采样通常用于减小图像的…...

Vue中的防抖和节流是什么,它们的作用是什么?

在Vue.js中,防抖(debounce)和节流(throttle)是两种常用的性能优化技术,主要用于处理高频事件,如窗口滚动、窗口大小调整、键盘输入等。 **防抖(Debounce)**:…...

C++的类与对象中(主讲默认成员函数)

目录 1.类的默认成员函数 2.构造函数 1.全缺省构造函数 2.第7点中的对自定义类型的成员变量构造(调用编译器自动生成的默认构造函数) 3.析构函数 4.拷贝构造函数 5.运算符重载 1.概念 2.赋值运算符重载 6.const成员函数 1.类的默认成员函数 默…...

C#学习系列之Gmap地图界面上的实时绘制问题

C#学习系列之Gmap地图界面上的实时绘制问题 前言总结 前言 在地图控件上增加绘制不规则图形,在之前的经验来看, System.InvalidOperationException:“无法使用 DependencyObject,它属于其父 Freezable 之外的其他线程。” 其实就是ui线程中…...

Spring Boot中实现定时任务的主要方式

文章目录 在Spring Boot中实现定时任务,主要有以下几种方式:1. 使用Scheduled注解2. 使用Quartz调度器使用Quartz调度器(更好的做法)3. 使用TaskExecutor和ScheduledExecutorService4.总结 在Spring Boot中实现定时任务,主要有以下几种方式&a…...

C#使用HttpWebRequest下载文件

public static bool HttpDownloadFile(string downloadUrl, string localPath, log4net.ILog log) { bool bFlagDownloadFile false; //log.Debug("HttpDownloadFile--准备以HTTP的方式下载文件,url:[" downloadUrl &…...

Linux: virtual: qemu-kvm: top cpu usage的组成是否包含guest的使用?

文章目录 问题试验mpstat问题 最近看一个问题,看到一个虚拟机分配的cpu是:3-4,27-28 Cpus_allowed: 0000,18000018 Cpus_allowed_list: 3-4,27-28 使用top看qemu-kvm进程的cpu usage是:13.3%: [root@qrms6-host01 14278]# top -p 14278 top - 01:19:35 up 4 days...

【03】深度学习——神经网络原理 | 多层感知机 | 前向传播和反向传播 | 多层感知机代码实现 | 回归问题、分类问题 | 多分类问题代码实现

深度学习 1.神经网络原理1.1神经元模型1.2神经网络结构1.3隐藏层1.3.1激活函数层1.4输出层1.4.1softmax层1.5损失函数1.6反向传播2.多层感知机2.1线性网络的局限性2.2引入非线性2.3多层感知机(Multi-Layer Perceptron,MLP)2.4激活函数(Activation Function)2.4.1Sigmoid函…...

MySQL行锁的实践

在MySQL中,根据加锁的粒度,可以将数据库的锁细分为表锁、行锁、页锁。其中,表锁(Table Lock)是一种粗粒度的锁,它锁定整个表,阻止其他事务访问表中的任何行;行锁(Row Lock)是一种细粒度的锁,它锁…...

iOS 18 將在 9 月 16 日正式上線

現在有了正式的上線日期了。一如往常的,它會在 iPhone 16 系列正式推出前的 9 月 16 日先行上線。 iOS 18 最受矚目的無疑是它的 Apple Intelligence 功能,不過並非所有的 iPhone 機種都能享用,而是只有去年的 iPhone 15 Pro 和 Pro Max 才能…...

css选择器有几种?选择器的优先级是怎样的?

CSS选择器的主要分类 元素选择器(Type Selectors):选择HTML文档中的特定类型的元素。 示例:p { color: red; } 类选择器(Class Selectors):选择具有指定类名的元素。 示例:.myClass …...

果蔬识别系统性能优化之路(四)

目录 前情提要剩下问题 问题排查解决方案下一步 前情提要 果蔬识别系统性能优化之路(三) 剩下问题 同步数据库数据并初始化ivf依然要8,9秒 问题排查 通过断点加时间打印,发生其实初始化ivf的时间很快,慢的是数据在网络间的传…...

kafka之protobuf

Protobuf 的 .proto 文件是一种描述消息结构的定义文件,使用这种文件可以定义数据结构(消息),然后生成对应语言的类或代码用于序列化和反序列化数据。生成 .proto 文件涉及到编写 .proto 文件定义,然后通过 protoc 编译…...

BARTBERT

BART和BERT都是基于Transformer架构的预训练语言模型。 模型架构: BERT (Bidirectional Encoder Representations from Transformers) 主要是一个编码器(Encoder)模型,它使用了Transformer的编码器部分来处理输入的文本&#xff0…...

C++ 11新特性(1)

文章目录 C11新特性之auto和decltype知识点autoauto推导规则什么时候使用auto? decltypedecltype推导规则 auto和decltype的配合使用 C11新特性之左值引用、右值引用、移动语义、完美转发左值、右值纯右值、将亡值纯右值将亡值左值引用、右值引用 移动语义深拷贝、浅…...

彻底理解浅拷贝和深拷贝

目录 浅拷贝实现 深拷贝实现自己手写 浅拷贝 浅拷贝是指创建一个新对象,这个对象具有原对象属性的精确副本 基本数据类型(如字符串、数字等),在浅拷贝过程中它们是通过值传递的,而不是引用传递,修改值并不…...

Spring4-IoC2-基于注解管理bean

目录 开启组件扫描 使用注解定义bean Autowired注入 场景一:属性注入 场景二:set注入 场景三:构造方法注入 场景四:形参注入 场景五:只有一个构造函数,无注解 场景六:Autowired和Quali…...

AI基础 L22 Uncertainty over Time I 时间的不确定性

Time and Uncertainty 1 Time and Uncertainty States and Observations • discrete-time models: we view the world as a series of snapshots or time slices • the time interval ∆ between slices, we assume to be the same for every interval • Xt: denotes the se…...

中小型企业网络构建

1 什么是 VLAN? VLAN,指的是虚拟局域网,是一种 2 层技术。可以在交换机上实现广播域的隔离。从而可以减小 数据广播风暴对交换网络的影响,降低了网络管理难度,同时可以实现网络规模的灵活扩展。 2 Trunk 链路与 Acces…...

PXE服务

一.PXE服务的功能介绍 1.无盘启动:PXE允许计算机在没有本地存储设备的情况下启动操作系统。这对于构建无盘工作站非常有用,因为计算机可以直接从网络加载操作系统和其他应用程序1。 2.远程安装操作系统:PXE技术可以用于远程安装操作系统&…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言:多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来&#xf…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题:docker pull 失败 网络不同,需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...

tomcat指定使用的jdk版本

说明 有时候需要对tomcat配置指定的jdk版本号,此时,我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...

spring Security对RBAC及其ABAC的支持使用

RBAC (基于角色的访问控制) RBAC (Role-Based Access Control) 是 Spring Security 中最常用的权限模型,它将权限分配给角色,再将角色分配给用户。 RBAC 核心实现 1. 数据库设计 users roles permissions ------- ------…...