BARTBERT
BART和BERT都是基于Transformer架构的预训练语言模型。
-
模型架构:
- BERT (Bidirectional Encoder Representations from Transformers) 主要是一个编码器(Encoder)模型,它使用了Transformer的编码器部分来处理输入的文本,并生成文本的表示。BERT特别擅长理解语言的上下文,因为它在预训练阶段使用了掩码语言模型(MLM)任务,即随机遮蔽一些单词,然后让模型预测这些被遮蔽的单词。
- BART 是一个解码器(Decoder)模型,它使用了Transformer的解码器部分。BART在预训练阶段使用了类似于BERT的MLM任务,但它还包括了一个下一句预测(NSP)任务,这使得BART在生成文本方面更为擅长。
-
预训练任务:
- BERT的预训练任务主要是MLM,它随机遮蔽输入文本中的一些单词,并让模型预测这些单词。
- BART的预训练任务除了MLM,还包括一个句子排列任务,即模型需要预测给定句子序列的正确顺序。
-
应用场景:
- BERT通常用于需要理解文本的任务,如文本分类、命名实体识别、问答系统等。
- BART则更适合于文本生成任务,如摘要、翻译、文本填空等。
-
生成方式:
- BERT是一个自回归模型,它在生成文本时是逐词生成的,每次只预测一个词。
- BART也是一个自回归模型,但它在生成文本时可以更灵活地处理序列到序列的任务,例如在机器翻译中将一个句子从一种语言翻译成另一种语言。
-
使用以下代码来加载BERT模型并进行一个简单的文本分类任务: from transformers import BertTokenizer, BertForSequenceClassification
import torch# 加载预训练的BERT模型和分词器
model_name = "bert-base-uncased" # 选择一个BERT模型
tokenizer = BertTokenizer.from_pretrained(model_name)
model = BertForSequenceClassification.from_pretrained(model_name)# 准备输入数据
text = "This is a positive example." # 一个正面的例子
encoded_input = tokenizer(text, return_tensors='pt')# 模型预测
model.eval() # 将模型设置为评估模式
with torch.no_grad():
output = model(**encoded_input)# 输出预测结果
predictions = torch.nn.functional.softmax(output.logits, dim=-1)
print(predictions) -
对于BART模型,进行文本摘要任务,可以使用以下代码: from transformers import BartTokenizer, BartForConditionalGeneration
import torch# 加载预训练的BART模型和分词器
model_name = "facebook/bart-large-cnn" # 选择一个BART模型,这里使用CNN新闻摘要任务的预训练模型
tokenizer = BartTokenizer.from_pretrained(model_name)
model = BartForConditionalGeneration.from_pretrained(model_name)# 准备输入数据
text = "The quick brown fox jumps over the lazy dog." # 一个完整的句子
encoded_input = tokenizer(text, return_tensors='pt', max_length=512, truncation=True)# 生成摘要
model.eval() # 将模型设置为评估模式
with torch.no_grad():
output = model.generate(**encoded_input, max_length=20)# 输出生成的摘要
print(tokenizer.decode(output[0], skip_special_tokens=True)) -
模型目标:
- BERT的目标是提高对文本的理解能力,通过预训练的上下文表示来增强下游任务的性能。
- BART的目标是提高文本生成的能力,通过预训练的序列到序列表示来增强生成文本的连贯性和准确性。
尽管BART和BERT在设计和应用上有所不同,但它们都利用了Transformer的强大能力来处理自然语言,并在NLP领域取得了显著的成果。
相关文章:
BARTBERT
BART和BERT都是基于Transformer架构的预训练语言模型。 模型架构: BERT (Bidirectional Encoder Representations from Transformers) 主要是一个编码器(Encoder)模型,它使用了Transformer的编码器部分来处理输入的文本࿰…...
C++ 11新特性(1)
文章目录 C11新特性之auto和decltype知识点autoauto推导规则什么时候使用auto? decltypedecltype推导规则 auto和decltype的配合使用 C11新特性之左值引用、右值引用、移动语义、完美转发左值、右值纯右值、将亡值纯右值将亡值左值引用、右值引用 移动语义深拷贝、浅…...

彻底理解浅拷贝和深拷贝
目录 浅拷贝实现 深拷贝实现自己手写 浅拷贝 浅拷贝是指创建一个新对象,这个对象具有原对象属性的精确副本 基本数据类型(如字符串、数字等),在浅拷贝过程中它们是通过值传递的,而不是引用传递,修改值并不…...

Spring4-IoC2-基于注解管理bean
目录 开启组件扫描 使用注解定义bean Autowired注入 场景一:属性注入 场景二:set注入 场景三:构造方法注入 场景四:形参注入 场景五:只有一个构造函数,无注解 场景六:Autowired和Quali…...

AI基础 L22 Uncertainty over Time I 时间的不确定性
Time and Uncertainty 1 Time and Uncertainty States and Observations • discrete-time models: we view the world as a series of snapshots or time slices • the time interval ∆ between slices, we assume to be the same for every interval • Xt: denotes the se…...
中小型企业网络构建
1 什么是 VLAN? VLAN,指的是虚拟局域网,是一种 2 层技术。可以在交换机上实现广播域的隔离。从而可以减小 数据广播风暴对交换网络的影响,降低了网络管理难度,同时可以实现网络规模的灵活扩展。 2 Trunk 链路与 Acces…...

PXE服务
一.PXE服务的功能介绍 1.无盘启动:PXE允许计算机在没有本地存储设备的情况下启动操作系统。这对于构建无盘工作站非常有用,因为计算机可以直接从网络加载操作系统和其他应用程序1。 2.远程安装操作系统:PXE技术可以用于远程安装操作系统&…...
Docker技术深度解析与实践应用
Docker技术深度解析与实践应用 引言 在现代软件开发与部署的浪潮中,Docker作为一种轻量级的容器化技术,凭借其高效、一致和灵活的特性,逐渐成为云原生应用开发和部署的基石。本文将深入探讨Docker的核心概念、技术原理、实践应用࿰…...
链动321模式小程序开发源码
链动31模式概述 链动31模式是一种基于技术的新型商业模式,它通过激励用户分享和推广,实现用户、企业和平台的共赢。该模式通常涉及商品展示、积分系统、分享推广和排行榜等功能,旨在通过用户之间的社交裂变来扩大销售和品牌影响力。如何开发这…...

java开发中间件学习记录(持续更新中~)
1 Redis 2JVM 3 java基础底层 4Mysql 5 spring 6 微服务 7.......(持续更新) One:Redis篇 1:Redis 1.穿透 1.1缓存穿透 1.1.1布隆过滤器 1.2缓存击穿 2:击穿 1.3:缓存雪崩 1.4:双写一致 1.5.持久化(RDB,AOF) 1.6…...

(批处理)无限弹窗cmd
代码部分 echo off echo 好了,可以退出了 pause>nul echo 再点就要无限弹窗了! pause >nul echo 你还点? pause >nul echo 再给你最后一次机会,别点了,再点准备重启 pause >nul echo 点击任意键变身奥特曼…...
解决ubuntu 24.04 ibus出现卡死、高延迟问题
问题描述 ubuntu中使用ibus经常会出现卡死、高延迟的问题,网上找了一些解决方法就手动输入命令是重启。但是键盘卡死了没法输入,不能很有效的解决问题。 解决思路 通过一个bash脚本监测ibus进程,当出现进程卡死的时候自动重启。 bash代码…...
减少脏页标记技术中处理时间的方法
减少脏页标记技术中处理时间的方法 一、引言 在数据库系统中,脏页标记技术对于确保数据的一致性和持久性至关重要。然而,脏页标记过程可能会消耗一定的处理时间,影响数据库的性能。因此,寻找有效的方法来减少脏页标记技术中的处理时间具有重要意义。 二、优化数据结构 …...

828华为云征文 | 华为云Flexusx与Docker技术融合,打造个性化WizNote服务
前言 华为云Flexus X实例携手Docker技术,创新融合打造高效个性化WizNote服务。华为云Flexus X实例的柔性算力与Docker的容器化优势相结合,实现资源灵活配置与性能优化,助力企业轻松构建稳定、高效的云端笔记平台。828华为云企业上云节特惠来袭…...

JavaScript事件处理和常用对象
文章目录 前言一、事件处理程序 1.JavaScript 常用事件2.事件处理程序的调用二、常用对象 1.Window 对象2.String 对象3.Date 对象总结 前言 JavaScript 语言是事件驱动型的。这意味着,该门语言可以通过事件触发来调用某一函数或者一段代码。该文还简单介绍了Window…...

Qt基础类05-尺寸类QSize
Qt基础类05-尺寸类QSize 摘要基本信息写在前面重要成员函数举例7个QSize QSize::boundedTo(const QSize &otherSize) constQSize QSize::expandedTo(const QSize &otherSize) constbool QSize::isEmpty() constbool QSize::isNull() constbool QSize::isValid() constQ…...
Vue 2中的this指向详解
在JavaScript中,this的指向是许多开发者经常遇到的问题,尤其是在使用Vue这样的框架时。在Vue 2中,理解this的指向对于正确地访问组件的数据和方法至关重要。 1. this在Vue组件中的指向 在Vue组件的选项中,this通常指向当前组件实…...

长业务事务的离线并发问题
事务指代一组操作同时成功或同时失败,事务可分为两类: 系统事务:即关系数据库事务,一次数据库连接中由start transaction或begin开启,commit表示提交,rollback表示回滚;业务事务:完…...

黑马程序员Java笔记整理(day01)
1.windowsR进入运行,输入cmd 2.环境变量 3.编写java第一步 4.使用idea 5.注释 6.字面量 7.变量 8.二进制 9.数据类型 10.关键词与标识符...
VMware Tools系列一:安装VMware Tools的作用
最近笔者安装了VMware Workstation pro 17,同时在VMware中安装了华为的Open Euler服务器,由于虚拟机Open Euler经常需要与宿主机win10交换数据,很不方便,而安装VMware Workstation pro 17并没有自动安装了VMware Tools ࿰…...

国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果。…...

dify打造数据可视化图表
一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...

如何在网页里填写 PDF 表格?
有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据ÿ…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...