翻转链表(力扣刷题)
给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。
示例 1:

输入:head = [1,2,3,4,5]
输出:[5,4,3,2,1]
示例 2:

输入:head = [1,2]
输出:[2,1]
示例 3:
输入:head = []
输出:[]
提示:
链表中节点的数目范围是 [0, 5000]
-5000 <= Node.val <= 5000
进阶:链表可以选用迭代或递归方式完成反转。你能否用两种方法解决这道题?
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/reverse-linked-list
思路:
如果再定义一个新的链表,实现链表元素的反转,其实这是对内存空间的浪费。
其实只需要改变链表的next指针的指向,直接将链表反转 ,而不用重新定义一个新的链表,如图所示:

之前链表的头节点是元素1, 反转之后头结点就是元素5 ,这里并没有添加或者删除节点,仅仅是改变next指针的方向。
那么接下来看一看是如何反转的呢?
首先定义一个cur指针,指向头结点,再定义一个pre指针,初始化为null。
然后就要开始反转了,首先要把 cur->next 节点用tmp指针保存一下,也就是保存一下这个节点。
为什么要保存一下这个节点呢,因为接下来要改变 cur->next 的指向了,将cur->next 指向pre ,此时已经反转了第一个节点了。
接下来,就是循环走如下代码逻辑了,继续移动pre和cur指针。
最后,cur 指针已经指向了null,循环结束,链表也反转完毕了。 此时我们return pre指针就可以了,pre指针就指向了新的头结点。
这里列举了两种方式:
①双指针法
class Solution {
public:ListNode* reverseList(ListNode* head) {ListNode* temp; // 保存cur的下一个节点ListNode* cur = head;ListNode* pre = NULL;while(cur) {temp = cur->next; // 保存一下 cur的下一个节点,因为接下来要改变cur->nextcur->next = pre; // 翻转操作// 更新pre 和 cur指针pre = cur;cur = temp;}return pre;}
};
②递归法:
class Solution {
public:ListNode* reverseList(ListNode* head) {ListNode* temp; // 保存cur的下一个节点ListNode* cur = head;ListNode* pre = NULL;while(cur) {temp = cur->next; // 保存一下 cur的下一个节点,因为接下来要改变cur->nextcur->next = pre; // 翻转操作// 更新pre 和 cur指针pre = cur;cur = temp;}return pre;}
};
我们可以发现,上面的递归写法和双指针法实质上都是从前往后翻转指针指向,其实还有另外一种与双指针法不同思路的递归写法:从后往前翻转指针指向。
代码如下:
class Solution {
public:ListNode* reverseList(ListNode* head) {// 边缘条件判断if(head == NULL) return NULL;if (head->next == NULL) return head;// 递归调用,翻转第二个节点开始往后的链表ListNode *last = reverseList(head->next);// 翻转头节点与第二个节点的指向head->next->next = head;// 此时的 head 节点为尾节点,next 需要指向 NULLhead->next = NULL;return last;}
}; 相关文章:
翻转链表(力扣刷题)
给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。 示例 1: 输入:head [1,2,3,4,5] 输出:[5,4,3,2,1] 示例 2: 输入:head [1,2] 输出:[2,1] 示例 3: 输入…...
JavaEE——锁相关
在开发过程中,如果需要开发者自主实现一把锁,就必须了解锁策略和锁的实现原理。 目录 锁策略 乐观锁和悲观锁 互斥锁和读写锁 轻量级锁和重量级锁 自旋锁和挂起等待锁 公平锁和非公平锁 可重入锁和不可重入锁 死锁 发生死锁的必要条件 synchr…...
C语言指针与数组 进阶
本章主要是补充 指针和数组方面的指示,把前面指针的知识补充下。参考前面的C语言基础—指针 C语言指针与数组 进阶用一级指针访问二维数组❗易错点: 不能直接指针变量数组名指向数组的指针1. 指向指针的指针2. 指向一维数组的指针 (*P)[4]—行指针二维数组名指针数组…...
Java连接SqlServer错误
Java连接SqlServer错误 🏠个人主页:shark-Gao 🧑个人简介:大家好,我是shark-Gao,一个想要与大家共同进步的男人😉😉 🎉目前状况:23届毕业生,目…...
Elastic 可观察性 - 适用于当今 “永远在线” 世界的解决方案
作者:Bahubali Shetti 当今世界,我们的生活很大程度上由应用程序控制。 无论是用于商业用途还是个人用途,我们都希望这些应用程序 “始终在线” 并能够立即做出响应。 这些高期望对开发人员和运营人员提出了巨大的要求。 管理这些应用程序需…...
Temu病毒式营销,如何在大红利时期快人一步?
从去年9月开始,拼多多推出海外版Temu,大手笔烧钱买量、大手笔补贴消费者,通过令人难以置信的超低价(比如一件卫衣2.44美元,且包邮),在北美市场迅速打开局面,并引发海外网友“人传人”…...
ChatGPT使用案例之写代码
ChatGPT使用案例之写代码 可以对于许多开发者而言又惊又喜的是我们可以使用ChatGPT 去帮我们完成一些代码,或者是测试用例的编写,但是正如我们提到的又惊又喜,可能开心的是可以解放一部分劳动力,将自己的精力从繁琐无聊的一些任务…...
蓝桥杯刷题第二十五天
第一题:全球变暖 题目描述 你有一张某海域 NxN 像素的照片,"."表示海洋、"#"表示陆地,如下所示: ....... .##.... .##.... ....##. ..####. ...###. ....... 其中"上下左右"四个方向上连在一起的一片陆地组成一…...
【牛客网】
目录知识框架No.1 前缀和NC14556:数圈圈NC14600:珂朵莉与宇宙NC21195 :Kuangyeye and hamburgersNC19798:区间权值NC16730:runNC15035:送分了qaqNo.2 字符串:小知识点:基于KMP算法的…...
SpringBoot中的事务
事务 Springboot有3种技术方式来实现让加了Transactional的方法能使用数据库事务,分别是"动态代理(运行时织入)"、“编译期织入”和“类加载期织入”。这3种技术都是基于AOP(Aspect Oriented Programming,面向切面编程)思想。(在网…...
Zookeeper客户端Curator5.2.0节点事件监听CuratorCache用法
Curator提供了三种Watcher: (1)NodeCache:监听指定的节点。 (2)PathChildrenCache:监听指定节点的子节点。 (3)TreeCache:监听指定节点和子节点及其子孙节点。…...
C++ using:软件设计中的面向对象编程技巧
C using:理解头文件与库的使用引言using声明a. 使用方法和语法b. 实际应用场景举例i. 避免命名冲突ii. 提高代码可读性c. 注意事项和潜在风险using指令a. 使用方法和语法b. 实际应用场景举例i. 将整个命名空间导入当前作用域ii. 代码组织和模块化using枚举a. C11的新特性b. 使用…...
修建灌木顺子日期
题目 有 N 棵灌木整齐的从左到右排成一排。爱丽丝在每天傍晩会修剪一棵灌 木, 让灌木的高度变为 0 厘米。爱丽丝修剪灌木的顺序是从最左侧的灌木开始, 每天向右修剪一棵灌木。当修剪了最右侧的灌木后, 她会调转方向, 下一天开 始向左修剪灌木。直到修剪了最左的灌木后再次调转方…...
深入学习JavaScript系列(七)——Promise async/await generator
本篇属于本系列第七篇 第一篇:#深入学习JavaScript系列(一)—— ES6中的JS执行上下文 第二篇:# 深入学习JavaScript系列(二)——作用域和作用域链 第三篇:# 深入学习JavaScript系列ÿ…...
Mybatis中的Map的使用和模糊查询的需求实现及其防SQL注入优化
文章目录一.Map的使用和模糊查询的需求实现及其防SQL注入优化1.1 Map的使用1.2 模糊查询的实现1.2.1 防SQL注入优化1.2.2 总结一.Map的使用和模糊查询的需求实现及其防SQL注入优化 1.1 Map的使用 替换之前的根据ID查询信息: 1.编写接口: User getUse…...
【redis】redis缓存更新策略
目录一、缓存更新策略二、主动更新策略三、Cache Aside Pattern3.1 删除缓存还是更新缓存?3.2 如何保证缓存与数据库的操作同时成功或失败?3.3 先操作缓存还是先操作数据库3.3.1 先删缓存再删库3.3.2 先删库再删缓存一、缓存更新策略 1.内存淘汰:不用自…...
LeetCode刷题--复制带随机指针的链表
复制带随机指针的链表1.题目2.解题思路3.完整代码1.题目 题目链接: https://leetcode.cn/problems/copy-list-with-random-pointer/ 给你一个长度为 n 的链表,每个节点包含一个额外增加的随机指针 random ,该指针可以指向链表中的任何节点或空节点。 …...
关于我的第一台电脑 华硕
2011年买的,第一台电脑是华硕 U36KI243SD 13.3英寸 白色 i5 1G独显 USB3.0 500G 当时花了5699,着实是一笔巨款,我同学看了一眼就说“我C,这本真好”。 买它主要还是因为好看。当时win7也才开始流行,感觉用上这个本&…...
【华为OD机试 2023最新 】 最大化控制资源成本(C++ 100%)
文章目录 题目描述输入描述输出描述备注用例题目解析C++题目描述 公司创新实验室正在研究如何最小化资源成本,最大化资源利用率,请你设计算法帮他们解决一个任务混部问题: 有taskNum项任务,每个任务有开始时间(startTime),结束时间(endTime),并行度(parallelism)…...
leetcode 有序数组的平方(977)
题目 给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。 示例 1: 输入:nums [-4,-1,0,3,10] 输出:[0,1,9,16,100] 解释:平方后,数组变…...
基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
LOOI机器人的技术实现解析:从手势识别到边缘检测
LOOI机器人作为一款创新的AI硬件产品,通过将智能手机转变为具有情感交互能力的桌面机器人,展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家,我将全面解析LOOI的技术实现架构,特别是其手势识别、物体识别和环境…...
上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式
简介 在我的 QT/C 开发工作中,合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式:工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...
Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践
在 Kubernetes 集群中,如何在保障应用高可用的同时有效地管理资源,一直是运维人员和开发者关注的重点。随着微服务架构的普及,集群内各个服务的负载波动日趋明显,传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...
高防服务器价格高原因分析
高防服务器的价格较高,主要是由于其特殊的防御机制、硬件配置、运营维护等多方面的综合成本。以下从技术、资源和服务三个维度详细解析高防服务器昂贵的原因: 一、硬件与技术投入 大带宽需求 DDoS攻击通过占用大量带宽资源瘫痪目标服务器,因此…...
二维FDTD算法仿真
二维FDTD算法仿真,并带完全匹配层,输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...
统计学(第8版)——统计抽样学习笔记(考试用)
一、统计抽样的核心内容与问题 研究内容 从总体中科学抽取样本的方法利用样本数据推断总体特征(均值、比率、总量)控制抽样误差与非抽样误差 解决的核心问题 在成本约束下,用少量样本准确推断总体特征量化估计结果的可靠性(置…...
