当前位置: 首页 > news >正文

图像处理 -- ISP功能之局部对比度增强 LCE

局部对比度增强(LCE)

局部对比度增强(Local Contrast Enhancement, LCE)是一种图像处理技术,旨在通过调整图像的局部区域对比度,增强图像细节和视觉效果。LCE 的实现方式多种多样,以下是几种常见的类型与算法说明。

1. 基于直方图均衡的LCE

实现方式

局部直方图均衡(Local Histogram Equalization)通过将图像划分为多个小块,分别对每个小块的亮度直方图进行均衡化,从而增强局部对比度。

算法流程

  1. 图像分块:将图像划分为多个局部小块。
  2. 直方图计算:为每个小块计算其亮度直方图。
  3. 直方图均衡化:对每个小块进行直方图均衡化。
  4. 重组图像:将均衡化后的小块重新拼接成增强后的图像。

优缺点

  • 优点:局部对比度增强效果明显,尤其在光照不均匀的场景中效果良好。
  • 缺点:可能会在小块边界处产生视觉不连续性。

2. 基于亮度调节的LCE

实现方式

基于亮度的权重查找表(LUT),即 lce_lum_wt_lut,可以根据亮度值动态调整对比度。暗区可增强细节,亮区则防止过曝。

算法流程

  1. 亮度计算:提取图像的亮度分量。
  2. 查找表应用:使用 lce_lum_wt_lut 对不同亮度应用不同的权重。
  3. 对比度调整:调整每个像素的亮度以增强局部对比度。
  4. 图像重建:根据调整后的亮度与原始色彩重新构建图像。

优缺点

  • 优点:查找表灵活性强,适合硬件加速,处理速度快。
  • 缺点:查找表需要精心设计,可能不能覆盖所有场景。

3. 基于拉普拉斯金字塔的LCE

实现方式

拉普拉斯金字塔通过将图像分解为多层不同分辨率的子图像,分别对不同分辨率下的细节进行处理,以增强局部对比度。

算法流程

  1. 图像金字塔构建:将图像分解为多个分辨率层次的子图像。
  2. 局部对比度增强:对每一层进行对比度增强,主要是中低频率信息的增强。
  3. 图像重建:将增强后的子图像重新组合,得到增强后的图像。

优缺点

  • 优点:处理多尺度对比度,适用于复杂光照场景,细节增强效果好。
  • 缺点:算法复杂度较高,硬件实现成本较大。

4. 基于自适应伽玛校正的LCE

实现方式

自适应伽玛校正通过动态调整伽玛值来增强图像的局部对比度。不同亮度区域采用不同的伽玛值,从而提升细节。

算法流程

  1. 伽玛值计算:根据局部亮度信息动态计算每个区域的伽玛值。
  2. 伽玛校正:对每个像素进行伽玛校正,增强暗区细节。
  3. 色彩保留:调整后的亮度与原始图像的色彩信息结合,确保自然的色彩过渡。

优缺点

  • 优点:算法简单、效率高,适合实时处理。
  • 缺点:对高动态范围场景的增强效果有限。

5. 基于双边滤波的LCE

实现方式

双边滤波是一种保留边缘的图像平滑技术,应用于LCE时可增强边缘细节,平滑背景区域。

算法流程

  1. 亮度提取:提取图像的亮度分量。
  2. 双边滤波:对亮度图像应用双边滤波,增强边缘细节并平滑局部区域。
  3. 图像重构:结合增强后的亮度与原始色彩信息,生成对比度增强图像。

优缺点

  • 优点:能够增强边缘细节,效果自然。
  • 缺点:计算复杂度较高,实时处理困难。

结论

局部对比度增强(LCE)算法有多种不同的实现方式,具体选择取决于应用场景、系统性能和处理需求。lce_lum_wt_lut 是一种常见的硬件加速方法,通过查找表实现快速的对比度调节,而更复杂的算法如拉普拉斯金字塔和双边滤波则适合高质量图像的处理需求。

相关文章:

图像处理 -- ISP功能之局部对比度增强 LCE

局部对比度增强(LCE) 局部对比度增强(Local Contrast Enhancement, LCE)是一种图像处理技术,旨在通过调整图像的局部区域对比度,增强图像细节和视觉效果。LCE 的实现方式多种多样,以下是几种常…...

C++速通LeetCode简单第5题-回文链表

解法1,堆栈O(n)简单法: /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nullptr) {}* ListNode(int x) : val(x), next(nullptr) {}* ListNode(int x, ListN…...

【Java 优选算法】双指针(下)

欢迎关注个人主页:逸狼 创造不易,可以点点赞吗~ 如有错误,欢迎指出~ 有效三角形的个数 题目链接 解法 解法1:暴力枚举--->O(n^3) 解法2:利用单调性,使用双指针来解决---->O(n^2) 优化:对整个数组进行排序先固定最大数在最大数的左…...

动态规划:07.路径问题_珠宝的最大价值_C++

题目链接:LCR 166. 珠宝的最高价值 - 力扣(LeetCode)https://leetcode.cn/problems/li-wu-de-zui-da-jie-zhi-lcof/description/ 一、题目解析 题目: 解析: 有过做前几道题的经验,我们会发现这道题其实就…...

COMDEL电源CX2500S RF13.56MHZ RF GENERATOR手侧

COMDEL电源CX2500S RF13.56MHZ RF GENERATOR手侧...

GPU加速生物信息分析的尝试

GPU工具分类 实话实说,暂时只有英伟达的GPU才能实现比较方便的基因组分析集成化解决方案,其他卡还需要努力呀,或者需要商业公司或学术团体的努力开发呀!FPGA等这种专用卡的解决方案也是有的,比如某测序仪厂家&#xf…...

【零散技术】详解Odoo17邮件发送(一)

序言:时间是我们最宝贵的财富,珍惜手上的每个时分 Odoo的邮件功能十分强大,在非常多的场景中可以看见其应用,例如原生的用户邀请,报价单发送,询价单发送等等.... 那么抛开原生自带的功能,我们如何巧妙的通过代码进行自…...

函数题 6-5 求自定类型元素的最大值【PAT】

文章目录 题目函数接口定义裁判测试程序样例输入样例输出样例 题解解题思路完整代码AC代码 编程练习题目集目录 题目 要求实现一个函数,求N个集合元素S[]中的最大值,其中集合元素的类型为自定义的ElementType。 函数接口定义 ElementType Max( Element…...

Python---爬虫

文章目录 目录 前言 一.Http请求/响应模块 requests模块 二.文本筛选模块 re模块 XPath模块 XPath 路径表达式 XPath 语法元素 三. 爬虫模板 爬虫案例 前言 Python爬虫是一种通过自动化程序爬取互联网上的信息的技术。爬虫可以自动访问网页并提取所需的数据,比…...

设计模式之组合设计模式

一、组合设计模式概念 组合模式 (Component) 是一种结构型设计模式,将对象组合成树形结构以表示“部分-整体”的层次结构。 组合模式使得用户对单个对象和组合对象的使用具有唯一性。 适用场景 想要表示对象的部分-整体层次结构。想要客户端忽略组合对象与单个对象的…...

Java汽车销售管理

技术架构: springboot mybatis Mysql5.7 vue2 npm node 有需要该项目的小伙伴可以添加我Q:598748873,备注:CSDN 功能描述: 针对汽车销售提供客户信息、车辆信息、订单信息、销售人员管理、财务报表等功能&…...

js TypeError: Cannot read property ‘initialize’ of undefined

js TypeError: Cannot read property ‘initialize’ of undefined 在JavaScript开发旅程中,遇到TypeError: Cannot read property ‘initialize’ of undefined这样的错误提示,无疑是令人沮丧的。这个错误通常意味着你试图访问一个未定义对象的initiali…...

【Motion Forecasting】【摘要阅读】BANet: Motion Forecasting with Boundary Aware Network

BANet: Motion Forecasting with Boundary Aware Network 这项工作发布于2022年,作者团队来自于OPPO。这项工作一直被放在arxiv上,并没有被正式发表,所提出的方法BANet在2022年达到了Argoverse 2 test dataset上的SOTA水准。 Method BANet…...

Cpp快速入门语法(下)(2)

文章目录 前言一、函数重载概念与使用C为何支持函数重载? 二、引用概念语法特性权限(常引用)使用场景与指针的区别 三、内联函数四、auto关键字(C11)五、基于范围的for循环(C11)六、指针空值nullptr(C11)总结 前言 承前启后,正文开始! 一、函…...

【GO开发】MacOS上搭建GO的基础环境-Hello World

文章目录 一、引言二、安装Go语言三、配置环境变量(可跳过)四、Hello World五、总结 一、引言 Go语言(Golang)因其简洁、高效、并发性强等特点,受到了越来越多开发者的喜爱。本文将带你一步步在Mac操作系统上搭建Go语…...

探索轻量级语言模型 GPT-4O-mini 的无限可能

随着人工智能技术的日益发展,语言模型正逐渐成为人们日常生活和工作中不可或缺的一部分。其中,GPT-4O-mini 作为一个轻量级大模型,以其强大的功能和易用性吸引了众多关注。本文将带您了解 GPT-4O-mini 的出色表现、应用场景以及如何免费使用这…...

CSS 笔记 1

1. CSS 优先级, 内部大于外部。 2. 几个属性: flex-grow: 1; 让 当前元素 在剩余空间中, 占据尽可能多的高度,确保它能在中间居中。 max-height: 300px; 限制最大高度 300 像素, flex-grow: 1; 导致占的太满了&#x…...

2024/9/16 dataloader、tensorboard、transform

一、pytorch两大法宝元素 假设有一个名为pytorch的包 dir():用于打开包,看里面的内容 help():用于查看具体的内容的用处 二、python文件,python控制台和jupyter的使用对比 三、pytorch读取数据 pytorch读取数据主要涉及到两个类&#xff1…...

C/C++语言基础--从C到C++的不同(下),15个部分说明C与C++的不同

本专栏目的 更新C/C的基础语法,包括C的一些新特性 前言 1-10在上篇C/C语言基础–从C到C的不同(上);当然C和C的不同还有很多,本人暂时只总结这些,其他的慢慢更新;上一篇C/C语言基础–从C到C的不同(上&…...

物理感知扩散的 3D 分子生成模型 - PIDiff 评测

PIDiff 是一个针对蛋白质口袋特异性的、物理感知扩散的 3D 分子生成模型,通过考虑蛋白质-配体结合的物理化学原理来生成分子,在原理上,生成的分子可以实现蛋白-小分子的自由能最小。 一、背景介绍 PIDiff 来源于延世大学计算机科学系的 Sang…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

多种风格导航菜单 HTML 实现(附源码)

下面我将为您展示 6 种不同风格的导航菜单实现&#xff0c;每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...

JavaScript基础-API 和 Web API

在学习JavaScript的过程中&#xff0c;理解API&#xff08;应用程序接口&#xff09;和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能&#xff0c;使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

关于uniapp展示PDF的解决方案

在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项&#xff1a; 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库&#xff1a; npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...

libfmt: 现代C++的格式化工具库介绍与酷炫功能

libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库&#xff0c;提供了高效、安全的文本格式化功能&#xff0c;是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全&#xff1a…...