当前位置: 首页 > news >正文

2024/9/16 dataloader、tensorboard、transform

一、pytorch两大法宝元素

假设有一个名为pytorch的包

dir():用于打开包,看里面的内容

help():用于查看具体的内容的用处

二、python文件,python控制台和jupyter的使用对比

三、pytorch读取数据

pytorch读取数据主要涉及到两个类:

使用Dataset类读取数据

从pytorch包中引入Dataset类,写一个子类对Dataset进行继承,重写其中方法达到目的

一般会设置数据路径问题,需import os

四、Tensorboard的使用

TensorBoard 是 TensorFlow提供的一组可视化工具

安装tensorboard

1.SummaryWriter类的使用

1.1 add_scalar()方法

def add_scalar(self,tag,  # 图像名scalar_value,  # y轴global_step=None, #  x轴walltime=None,new_style=False,double_precision=False,
):

运行后,出现logs文件夹:

查看该文件:

在终端输入tensorboard --logdir=logs或者tensorboard --logdir PATH

默认生成文件通过6006端口打开,可指定端口打开:tensorboard --logdir=logs --port=6007

点击链接:

注:有时生成文件多了之后,图像出现在一起可能会出现拟合现象,就将所有事件删除后重新生成

1.2 add_image()方法

def add_image(self, tag, img_tensor, global_step=None, walltime=None, dataformats="CHW"
):

tag:标题

img_tensor:图片,此处图片只能是torch.tensor,numpy.array或string 不是这些,要转换成这些

global_step:表明是第几张图片

dataformats:图片的通道,高,宽顺序,默认CHW 可自行指定

五、Transform的使用

通过 from torchvision import transforms 引入transforms模块

torchvision是图像处理库,计算机视觉工具包,transforms 集成了随机翻转、旋转、增强对比度、转化为tensor、转化为图像等功能,用于数据增强。(transforms更多的指的是transforms.py文件,其中包含很多类)。

NumPy是一个功能强大的Python库,主要用于对多维数组执行计算,它极大地简化了向量和矩阵的操作处理。

Tensor,即“张量”。实际上跟numpy数组、向量、矩阵的格式基本一样。但是是专门针对GPU来设计的,可以运行在GPU上来加快计算效率。

在PyTorch中,张量Tensor是最基础的运算单位,与NumPy中的NDArray类似,张量表示的是一个多维矩阵。不同的是,PyTorch中的Tensor可以运行在GPU上,而NumPy的NDArray只能运行在CPU上。由于Tensor能在GPU上运行,因此大大加快了运算速度。

在使用 transforms.ToTensor() 进行图片数据转换过程中会对图像的像素值进行正则化,即一般读取的图片像素值都是8 bit 的二进制,那么它的十进制的范围为 [0, 255],而正则化会对每个像素值除以255,也就是把像素值正则化成 [0.0, 1.0]的范围

详见https://www.cnblogs.com/yq-ydky/p/17617289.html

1.使用ToTensor类将图片数据转化为Tensor类型

2.为什么要使用tensor这一数据类型

tensor这一数据类型包含了很多在神经网络中需要用到内容,比如后向,梯度

对于搭建神经网络更为方便

3.将PIL数据转化为Tensor,利用Tensorboard进行显示

4.常用的transform类

Resize只改变图像大小,不改变其数据类型

compose对象是各种类对象的合成体,要注意的列表中的对象要具有相关性,前一对象的输出是后一个对象的输入

5.transform与数据集的结合使用

torchvision中可以找到一些常用数据集,常用模型:

torchvision — Torchvision 0.19 documentation

torchvision.datasets中包含许多数据集,可直接设置参数使用命令下载

例子:CIFAR10

CIFAR10 — Torchvision 0.19 documentation

(1)下载数据:

数据集中的每一个数据都是一个由图片和对应的类别标签索引组成的元组

(2)原始图片为PIL类型,添加一些transform操作:

(3)利用tensorboard对图像进行显示

六、dataloader介绍

参考:torch.utils.data — PyTorch 2.4 documentation

使用dataset获取数据集时,返回的数据集中每一个数据都是一个由图片和标签组成的元组

CIFAR10中的图片维度(3,32,32)

dataloader负责按照想要的方式从数据集中得到数据

(1)将batch设置为4,每页4个,分多页

(2)将batch设置为64,每页64个,分多页,epoch表示遍历完一遍数据

注:指定了数据集会读取该数据集所有数据,batch只是将数据分批次

format()的使用:

Python字符串格式化之使用format()方法_python_脚本之家

相关文章:

2024/9/16 dataloader、tensorboard、transform

一、pytorch两大法宝元素 假设有一个名为pytorch的包 dir():用于打开包,看里面的内容 help():用于查看具体的内容的用处 二、python文件,python控制台和jupyter的使用对比 三、pytorch读取数据 pytorch读取数据主要涉及到两个类&#xff1…...

C/C++语言基础--从C到C++的不同(下),15个部分说明C与C++的不同

本专栏目的 更新C/C的基础语法,包括C的一些新特性 前言 1-10在上篇C/C语言基础–从C到C的不同(上);当然C和C的不同还有很多,本人暂时只总结这些,其他的慢慢更新;上一篇C/C语言基础–从C到C的不同(上&…...

物理感知扩散的 3D 分子生成模型 - PIDiff 评测

PIDiff 是一个针对蛋白质口袋特异性的、物理感知扩散的 3D 分子生成模型,通过考虑蛋白质-配体结合的物理化学原理来生成分子,在原理上,生成的分子可以实现蛋白-小分子的自由能最小。 一、背景介绍 PIDiff 来源于延世大学计算机科学系的 Sang…...

蓝桥杯-基于STM32G432RBT6的LCD进阶(LCD界面切换以及高亮显示界面)

目录 一、页面切换内容详解 1.逻辑解释 2.代码详解 code.c(内含详细讲解) code.h main.c 3.效果图片展示 ​编辑 二、页面选项高亮内容详解 1.逻辑解释 2.读入数据 FIRST.第一种高亮类型 code.c(内含代码详解) code.…...

2022高教社杯全国大学生数学建模竞赛C题 问题一(1) Python代码

目录 问题 11.1 对这些玻璃文物的表面风化与其玻璃类型、纹饰和颜色的关系进行分析数据探索 -- 单个分类变量的绘图树形图条形图扇形图雷达图 Cramer’s V 相关分析统计检验列联表分析卡方检验Fisher检验 绘图堆积条形图分组条形图 分类模型Logistic回归随机森林 import matplo…...

【3D打印】3D打印机运动控制“Gcode”

一、Gcode是什么? Gcode是一种用于控制数控机床(包括3D打印机)的语言。它由一系列指令组成,每个指令控制机器的一个特定动作。 二、基础术语 G指令:用于控制机器的运动。M指令:用于控制机器的其他功能&a…...

针对Chsrc换源工具的简单脚本

此脚本目前只是针对 X86和aarch64系统,可根据自身需求进行修改,点赞自取 关于工具的详细介绍请看上一篇文章:全平台通用的换源工具Chsrc #!/bin/bashtag1"https://gitee.com/RubyMetric/chsrc/releases/download/pre/chsrc-x64-linux&…...

vscode中如何配置c/c++环境

“批判他人总是想的太简单 剖析自己总是想的太困难” 文章目录 前言文章有误敬请斧正 不胜感恩!一、准备工作二、安装 VSCode 插件三、配置 VSCode1. 配置编译任务(tasks.json)2. 配置调试器(launch.json) 四、运行和调…...

【梯度消失|梯度爆炸】Vanishing Gradient|Exploding Gradient——为什么我的卷积神经网络会不好呢?

【梯度消失|梯度爆炸】Vanishing Gradient|Exploding Gradient——为什么我的卷积神经网络会不好呢? 【梯度消失|梯度爆炸】Vanishing Gradient|Exploding Gradient——为什么我的卷积神经网络会不好呢? 文章目录 【梯度消失|梯度爆炸】Vanishing Gradi…...

MAC 地址简化概念(有线 MAC 地址、无线 MAC 地址、MAC 地址的随机化)

一、MAC 地址 MAC 地址(Media Access Control Address),即媒体访问控制地址,也称为物理地址、硬件地址或链路层地址 MAC 地址有时也被称为物理地址,但这并不意味着 MAC 地址属于网络体系结构中的物理层,它…...

SQL_yog安装和使用演示--mysql三层结构

目录 1.什么是SQL_yog 2.下载安装 3.页面介绍 3.1链接主机 3.2创建数据库 3.3建表操作 3.4向表里面填内容 3.5使用指令查看效果 4.连接mysql的指令 4.1前提条件 4.2链接指令 ​编辑 4.3创建时的说明 4.4查看是不是连接成功 5.mysql的三层结构 1.什么是SQL_yog 我…...

蓝桥杯-STM32G431RBT6(解决LCD与LED引脚冲突的问题)

一、LCD与LED为什么会引脚冲突 LCD与LED引脚共用。 网上文章是在LCD_WriteRAM、LCD_WriteRAM_Prepare、LCD_WriteReg中添加,但问题并没有解决。 二、使用步骤 在如下函数中加入uint16_t tempGPIOC->ODR; GPIOC->ODRtemp; LCD_Init(); void LCD_C…...

ESP-01S,ESP8266设置客户端透传模式

ESP-01S,ESP8266设置透传(透明传输)模式 例子 ATCWMODE_DEF1 //station模式 ATRST //重启 ATCWLAP //查看周围热点 ATCWJAP_DEF"ssid","password" //连接热点 ATCIFSR //查看ip ATCIPSTA_DEF"192.168.82.66","192.168.6.1&…...

NFT Insider #147:Sandbox 人物化身九月奖励上线;Catizen 付费用户突破百万

市场数据 加密艺术及收藏品新闻 Doodles 动画特别剧《Dullsville and The Doodleverse》在多伦多国际电影节首映 Doodles 最近在多伦多国际电影节(TIFF)首映了其动画特别剧《Dullsville and The Doodleverse》,这是该品牌的一个重要里程碑。…...

103.WEB渗透测试-信息收集-FOFA语法(3)

免责声明:内容仅供学习参考,请合法利用知识,禁止进行违法犯罪活动! 内容参考于: 易锦网校会员专享课 上一个内容:102.WEB渗透测试-信息收集-FOFA语法(2) FOFA使用实例 组件框架 …...

SpringDataJPA基础增删改查

添加:save(对象) 删除:delete(主键或者带有主键的对象) 修改:save(对象) 对象中没有id,执行添加操作 对象中有id id不存在:执行添加 id存在: 其余数据…...

好代码网同款wordpress主题,完全开源无加密可二开

这个其实就是好代码网站的早期整站打包代码,当时售价198的,现在里面的部分数据已经过期了,只能展示效果,没法下载。所以就只当做主题分享给大家使用。 资源下载类网站目前还是红利期,搞个特价主机和域名,再…...

如何在@GenericGenerator中显式指定schema

现在的情况是,在MySQL中有db1和db2两个数据库。项目使用Hibernate,可同时访问db1和db2,默认数据库为db1。表table2在db2中。且table2的主键名为ids,是自增长字段(Auto Increment)。 table2和ids的定义为&a…...

感知器神经网络

1、原理 感知器是一种前馈人工神经网络,是人工神经网络中的一种典型结构。感知器具有分层结构,信息从输入层进入网络,逐层向前传递至输出层。根据感知器神经元变换函数、隐层数以及权值调整规则的不同,可以形成具有各种功能特点的…...

【C++】——继承详解

目录 1、继承的概念与意义 2、继承的使用 2.1继承的定义及语法 2.2基类与派生类间的转换 2.3继承中的作用域 2.4派生类的默认成员函数 <1>构造函数 <2>拷贝构造函数 <3>赋值重载函数 <4析构函数 <5>总结 3、继承与友元 4、继承与静态变…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

JS设计模式(4):观察者模式

JS设计模式(4):观察者模式 一、引入 在开发中&#xff0c;我们经常会遇到这样的场景&#xff1a;一个对象的状态变化需要自动通知其他对象&#xff0c;比如&#xff1a; 电商平台中&#xff0c;商品库存变化时需要通知所有订阅该商品的用户&#xff1b;新闻网站中&#xff0…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?

现有的 Redis 分布式锁库&#xff08;如 Redisson&#xff09;相比于开发者自己基于 Redis 命令&#xff08;如 SETNX, EXPIRE, DEL&#xff09;手动实现分布式锁&#xff0c;提供了巨大的便利性和健壮性。主要体现在以下几个方面&#xff1a; 原子性保证 (Atomicity)&#xff…...

如何应对敏捷转型中的团队阻力

应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中&#xff0c;明确沟通敏捷转型目的尤为关键&#xff0c;团队成员只有清晰理解转型背后的原因和利益&#xff0c;才能降低对变化的…...

在 Spring Boot 项目里,MYSQL中json类型字段使用

前言&#xff1a; 因为程序特殊需求导致&#xff0c;需要mysql数据库存储json类型数据&#xff0c;因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...

恶补电源:1.电桥

一、元器件的选择 搜索并选择电桥&#xff0c;再multisim中选择FWB&#xff0c;就有各种型号的电桥: 电桥是用来干嘛的呢&#xff1f; 它是一个由四个二极管搭成的“桥梁”形状的电路&#xff0c;用来把交流电&#xff08;AC&#xff09;变成直流电&#xff08;DC&#xff09;。…...

6️⃣Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙

Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙 一、前言:离区块链还有多远? 区块链听起来可能遥不可及,似乎是只有密码学专家和资深工程师才能涉足的领域。但事实上,构建一个区块链的核心并不复杂,尤其当你已经掌握了一门系统编程语言,比如 Go。 要真正理解区…...