当前位置: 首页 > news >正文

【梯度消失|梯度爆炸】Vanishing Gradient|Exploding Gradient——为什么我的卷积神经网络会不好呢?

【梯度消失|梯度爆炸】Vanishing Gradient|Exploding Gradient——为什么我的卷积神经网络会不好呢?

【梯度消失|梯度爆炸】Vanishing Gradient|Exploding Gradient——为什么我的卷积神经网络会不好呢?


文章目录

  • 【梯度消失|梯度爆炸】Vanishing Gradient|Exploding Gradient——为什么我的卷积神经网络会不好呢?
  • 1.什么是梯度消失和梯度爆炸?
    • 梯度消失
    • 梯度爆炸
  • 2.梯度消失和梯度爆炸的产生原因
  • 3.避免梯度消失和梯度爆炸的方法
    • 3.1合理的权重初始化
    • 3.2使用合适的激活函数
    • 3.3 梯度裁剪(Gradient Clipping)
    • 3.4 使用正则化方法
    • 3.5使用归一化技术
    • 3.6使用合适的优化器
  • 4. 梯度消失和梯度爆炸的检测
  • 5. 总结与实施方案


1.什么是梯度消失和梯度爆炸?

梯度消失

  • 定义:梯度消失指的是在反向传播过程中,网络的梯度值逐渐变得非常小,接近于零,导致模型参数更新缓慢或根本无法更新。
  • 问题:深层网络的前几层由于梯度变得非常小,几乎不会更新,使得这些层无法学习有效的特征,导致训练停滞。
  • 典型场景:梯度消失常发生在使用饱和激活函数(如 sigmoid 或 tanh)的大深度网络中。

梯度爆炸

  • 定义:梯度爆炸是指在反向传播过程中,梯度值逐渐变得非常大,导致模型的参数更新过大,可能使得权重发散或模型无法收敛。
  • 问题:当梯度过大时,模型参数会被大幅度更新,导致模型不稳定,损失函数无法收敛。
  • 典型场景
    梯度爆炸通常发生在长序列的递归神经网络(RNN)中,或深层网络中层数太多,梯度没有合理控制。

2.梯度消失和梯度爆炸的产生原因

这两类问题的根本原因来自反向传播中链式法则的应用。在反向传播过程中,梯度从输出层向输入层传播,当网络层数较深时,会出现:

  • 梯度逐层乘积变小,导致梯度消失
  • 梯度逐层乘积变大,导致梯度爆炸

尤其是当权重初始化不当或激活函数的导数值处于某个饱和区间时,这种现象更为严重。例如:

  • 对于 sigmoid 激活函数,其导数在接近 0 和 1 的区间非常小,容易导致梯度消失。
  • 过大或不合理的权重初始值,可能导致梯度的指数级增长,导致梯度爆炸。

3.避免梯度消失和梯度爆炸的方法

3.1合理的权重初始化

不合理的权重初始化可能导致梯度的过度放大或缩小。常用的初始化方法可以有效减少梯度消失或爆炸的风险。

  • Xavier/Glorot 初始化:适用于 sigmoidtanh 激活函数的网络,权重会根据输入和输出节点数的平方根进行缩放。
  • He 初始化:适用于 ReLU 激活函数的网络,权重根据输入节点数进行缩放。

代码示例(PyTorch 中使用 Xavier/He 初始化)

import torch
import torch.nn as nn
import torch.nn.functional as Fclass SimpleModel(nn.Module):def __init__(self):super(SimpleModel, self).__init__()self.fc1 = nn.Linear(784, 256)self.fc2 = nn.Linear(256, 10)# 使用 Xavier 初始化nn.init.xavier_uniform_(self.fc1.weight)nn.init.xavier_uniform_(self.fc2.weight)# 对 ReLU 激活函数可以使用 He 初始化# nn.init.kaiming_uniform_(self.fc1.weight, nonlinearity='relu')def forward(self, x):x = F.relu(self.fc1(x))x = self.fc2(x)return x

3.2使用合适的激活函数

  • ReLU:ReLU(Rectified Linear Unit)激活函数能够减轻梯度消失问题,因为它的导数在大部分区间内为 1,避免了梯度消失。然而,ReLU 可能存在“神经元死亡”问题(当输入小于 0 时输出恒为 0,导致该神经元永不激活)。
  • Leaky ReLU:通过引入负值的“泄露”,避免了神经元死亡问题。
  • ELU、SELU:这些激活函数也可以在一定程度上缓解梯度消失问题。

3.3 梯度裁剪(Gradient Clipping)

梯度裁剪是应对梯度爆炸的常用方法,尤其在递归神经网络(RNN)中使用较为广泛。通过限制梯度的最大范数,确保梯度不会无限增大

代码示例(PyTorch 中进行梯度裁剪)

# 假设有一个损失函数 loss
loss.backward()# 在反向传播后进行梯度裁剪,设定最大范数为 1.0
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)# 更新权重
optimizer.step()

3.4 使用正则化方法

  • L2 正则化(权重衰减):通过在损失函数中加入权重参数的惩罚项,防止权重变得过大,间接避免梯度爆炸。
  • Dropout:通过随机丢弃部分神经元,避免过拟合,也有助于减少梯度爆炸。

代码示例(在 Keras 中添加 L2 正则化)

from tensorflow.keras import regularizers# 添加 L2 正则化到模型层
model = tf.keras.models.Sequential([tf.keras.layers.Dense(128, activation='relu', kernel_regularizer=regularizers.l2(0.01)),tf.keras.layers.Dense(10, activation='softmax')
])

3.5使用归一化技术

Batch Normalization:批量归一化在每一层计算的过程中标准化输出,使得数据具有均值为 0,方差为 1 的分布。这可以有效缓解梯度消失和梯度爆炸问题,同时加速模型收敛。

代码示例(在 PyTorch 中添加 Batch Normalization)

class SimpleModelWithBN(nn.Module):def __init__(self):super(SimpleModelWithBN, self).__init__()self.fc1 = nn.Linear(784, 256)self.bn1 = nn.BatchNorm1d(256)  # 添加 Batch Normalizationself.fc2 = nn.Linear(256, 10)def forward(self, x):x = F.relu(self.bn1(self.fc1(x)))  # 在激活函数前加入归一化x = self.fc2(x)return x

3.6使用合适的优化器

  • 自适应学习率优化器:如 Adam、RMSprop 等优化器,能够动态调整每个参数的学习率,防止某些参数的梯度过大或过小,有效应对梯度爆炸和梯度消失问题。

代码示例(使用 Adam 优化器)

optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

4. 梯度消失和梯度爆炸的检测

为了及时发现梯度消失和梯度爆炸问题,可以监控每一层的梯度变化。通过监测每个 epoch 中的梯度,可以提前发现问题并采取措施。

代码示例(监控 PyTorch 中每一层的梯度)

for name, param in model.named_parameters():if param.grad is not None:print(f'Layer: {name}, Grad Norm: {param.grad.norm()}')

5. 总结与实施方案

避免梯度消失:

  • 使用非饱和激活函数如 ReLU、Leaky ReLU、ELU。
  • 采用合适的权重初始化方法(Xavier 初始化、He 初始化)。
  • 在深层网络中使用 Batch Normalization。

避免梯度爆炸:

  • 使用梯度裁剪技术,限制梯度的最大范数。
  • 使用正则化技术,如 L2 正则化。
  • 使用自适应学习率优化器如 Adam 或 RMSprop。

相关文章:

【梯度消失|梯度爆炸】Vanishing Gradient|Exploding Gradient——为什么我的卷积神经网络会不好呢?

【梯度消失|梯度爆炸】Vanishing Gradient|Exploding Gradient——为什么我的卷积神经网络会不好呢? 【梯度消失|梯度爆炸】Vanishing Gradient|Exploding Gradient——为什么我的卷积神经网络会不好呢? 文章目录 【梯度消失|梯度爆炸】Vanishing Gradi…...

MAC 地址简化概念(有线 MAC 地址、无线 MAC 地址、MAC 地址的随机化)

一、MAC 地址 MAC 地址(Media Access Control Address),即媒体访问控制地址,也称为物理地址、硬件地址或链路层地址 MAC 地址有时也被称为物理地址,但这并不意味着 MAC 地址属于网络体系结构中的物理层,它…...

SQL_yog安装和使用演示--mysql三层结构

目录 1.什么是SQL_yog 2.下载安装 3.页面介绍 3.1链接主机 3.2创建数据库 3.3建表操作 3.4向表里面填内容 3.5使用指令查看效果 4.连接mysql的指令 4.1前提条件 4.2链接指令 ​编辑 4.3创建时的说明 4.4查看是不是连接成功 5.mysql的三层结构 1.什么是SQL_yog 我…...

蓝桥杯-STM32G431RBT6(解决LCD与LED引脚冲突的问题)

一、LCD与LED为什么会引脚冲突 LCD与LED引脚共用。 网上文章是在LCD_WriteRAM、LCD_WriteRAM_Prepare、LCD_WriteReg中添加,但问题并没有解决。 二、使用步骤 在如下函数中加入uint16_t tempGPIOC->ODR; GPIOC->ODRtemp; LCD_Init(); void LCD_C…...

ESP-01S,ESP8266设置客户端透传模式

ESP-01S,ESP8266设置透传(透明传输)模式 例子 ATCWMODE_DEF1 //station模式 ATRST //重启 ATCWLAP //查看周围热点 ATCWJAP_DEF"ssid","password" //连接热点 ATCIFSR //查看ip ATCIPSTA_DEF"192.168.82.66","192.168.6.1&…...

NFT Insider #147:Sandbox 人物化身九月奖励上线;Catizen 付费用户突破百万

市场数据 加密艺术及收藏品新闻 Doodles 动画特别剧《Dullsville and The Doodleverse》在多伦多国际电影节首映 Doodles 最近在多伦多国际电影节(TIFF)首映了其动画特别剧《Dullsville and The Doodleverse》,这是该品牌的一个重要里程碑。…...

103.WEB渗透测试-信息收集-FOFA语法(3)

免责声明:内容仅供学习参考,请合法利用知识,禁止进行违法犯罪活动! 内容参考于: 易锦网校会员专享课 上一个内容:102.WEB渗透测试-信息收集-FOFA语法(2) FOFA使用实例 组件框架 …...

SpringDataJPA基础增删改查

添加:save(对象) 删除:delete(主键或者带有主键的对象) 修改:save(对象) 对象中没有id,执行添加操作 对象中有id id不存在:执行添加 id存在: 其余数据…...

好代码网同款wordpress主题,完全开源无加密可二开

这个其实就是好代码网站的早期整站打包代码,当时售价198的,现在里面的部分数据已经过期了,只能展示效果,没法下载。所以就只当做主题分享给大家使用。 资源下载类网站目前还是红利期,搞个特价主机和域名,再…...

如何在@GenericGenerator中显式指定schema

现在的情况是,在MySQL中有db1和db2两个数据库。项目使用Hibernate,可同时访问db1和db2,默认数据库为db1。表table2在db2中。且table2的主键名为ids,是自增长字段(Auto Increment)。 table2和ids的定义为&a…...

感知器神经网络

1、原理 感知器是一种前馈人工神经网络,是人工神经网络中的一种典型结构。感知器具有分层结构,信息从输入层进入网络,逐层向前传递至输出层。根据感知器神经元变换函数、隐层数以及权值调整规则的不同,可以形成具有各种功能特点的…...

【C++】——继承详解

目录 1、继承的概念与意义 2、继承的使用 2.1继承的定义及语法 2.2基类与派生类间的转换 2.3继承中的作用域 2.4派生类的默认成员函数 <1>构造函数 <2>拷贝构造函数 <3>赋值重载函数 <4析构函数 <5>总结 3、继承与友元 4、继承与静态变…...

RocketMQ 消费方式

在消息传递系统中&#xff0c;“推&#xff08;Push&#xff09;”和“拉&#xff08;Pull&#xff09;”是两种不同的消息消费方式&#xff0c;RocketMQ 也支持这两种模式。下面是对这两种模式的详细解释&#xff1a; 1. 推模式&#xff08;Push Model&#xff09; 模式简介…...

初始爬虫7

针对数据提取的项目实战&#xff1a; 补充初始爬虫6的一个知识点&#xff1a; etree.tostring能够自动补全html缺失的标签&#xff0c;显示原始的HTML结构 # -*- coding: utf-8 -*- from lxml import etreetext <div> <ul> <li class"item-1">…...

深入理解Appium定位策略与元素交互

深入理解Appium定位策略与元素交互 在移动应用测试领域&#xff0c;Appium作为一款流行的跨平台自动化测试工具&#xff0c;其强大而灵活的元素定位能力对于构建稳定、高效的测试脚本至关重要。本文将深入探讨Appium支持的各种定位方法&#xff0c;并分享如何通过高级技巧和最…...

java基础面试题总结

java基础面试题总结 目录 前言 1. JVM vs JDK vs JRE的了解 2. 谈谈你对编程、编译、运行的理解 3. 什么是字节码?采用字节码的好处是什么? 5. java中的注解有几种&#xff0c;分别是什么&#xff1f; 6. 字符型常量和字符串常量 7.标识符和关键字的认识 8. 泛型&#xff…...

Typescript 的类型断言

类型断言&#xff08;Type Assertion&#xff09;是 TypeScript 中的一种机制&#xff0c;允许开发者手动指定某个值的类型&#xff0c;而不是让 TypeScript 自动推断类型。类型断言通常用于在编译时告诉 TypeScript 编译器某个值的具体类型&#xff0c;以便在后续代码中进行类…...

【设计模式】单例模式详解及应用实例

单例模式&#xff08;Singleton Pattern&#xff09;是一种创建型设计模式&#xff0c;保证一个类在整个程序的生命周期中只有一个实例&#xff0c;并提供一个全局访问点。单例模式广泛用于需要全局唯一实例的场景&#xff0c;比如数据库连接池、日志对象、线程池等。 单例模式…...

学习图解算法 使用C语言

图解算法 使用C语言 也就是通过C语言实现各种算法 链接&#xff1a;百度云盘 提取码&#xff1a;1001...

基于Netty实现TCP客户端:封装断线重连、连接保持

文章目录 引言I 基于Netty实现TCP客户端基于 Netty 创建客户端 时序图封装思路NettyClient 封装II 客户端的断线重连本质使用过程中断线重连重试策略III 心跳机制心跳检测处理器心跳机制实现逻辑IV 同步等待消息返回V 工具ForkJoinPoolByteConvertUtilsee also处理假死把handle…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日&#xff0c;中天合创屋面分布式光伏发电项目顺利并网发电&#xff0c;该项目位于内蒙古自治区鄂尔多斯市乌审旗&#xff0c;项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站&#xff0c;总装机容量为9.96MWp。 项目投运后&#xff0c;每年可节约标煤3670…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文&#xff5c;DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色&#xff0c;华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型&#xff0c;能助力我们轻松驾驭 DeepSeek-V3/R1&#xff0c;本文中将分享如何…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...

华为OD机考-机房布局

import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...