2022高教社杯全国大学生数学建模竞赛C题 问题一(1) Python代码
目录
- 问题 1
- 1.1 对这些玻璃文物的表面风化与其玻璃类型、纹饰和颜色的关系进行分析
- 数据探索 -- 单个分类变量的绘图
- 树形图
- 条形图
- 扇形图
- 雷达图
- Cramer’s V 相关分析
- 统计检验
- 列联表分析
- 卡方检验
- Fisher检验
- 绘图
- 堆积条形图
- 分组条形图
- 分类模型
- Logistic回归
- 随机森林
import matplotlib.pyplot as plt
# Linux show Chinese characters *** important
plt.rcParams['font.family'] = 'WenQuanYi Micro Hei' import warnings
warnings.filterwarnings("ignore")
import pandas as pd# read by default 1st sheet of an excel file
path = '/home/shiyu/Desktop/path_acdemic/ant/数模/历年题目/2022/附件.xlsx'
d1 = pd.read_excel(path, sheet_name='表单1')
d2 = pd.read_excel(path, sheet_name='表单2')
d3 = pd.read_excel(path, sheet_name='表单3')print(d1.shape)
print(d2.shape)
print(d3.shape)
(58, 5)
(69, 15)
(8, 16)
问题 1
1.1 对这些玻璃文物的表面风化与其玻璃类型、纹饰和颜色的关系进行分析
数据探索 – 单个分类变量的绘图



树形图
https://www.geeksforgeeks.org/treemaps-in-python-using-squarify/
import seaborn as sb
import matplotlib.pyplot as plt
import squarifydata = list(d1['颜色'].value_counts())
labels = list(d1['颜色'].value_counts().index)plt.rcParams['figure.dpi'] = 300
plt.rcParams['savefig.dpi'] = 300plt.figure(figsize=(15,8))
squarify.plot(sizes=data, label=labels, text_kwargs={'fontsize': 20},color=sb.color_palette("Spectral",len(data))) plt.axis("off")
(0.0, 100.0, 0.0, 100.0)

条形图
df = pd.DataFrame(d1['颜色'].value_counts())
df['颜色'] = df.index
df
| count | 颜色 | |
|---|---|---|
| 颜色 | ||
| 浅蓝 | 20 | 浅蓝 |
| 蓝绿 | 15 | 蓝绿 |
| 深绿 | 7 | 深绿 |
| 紫 | 4 | 紫 |
| 浅绿 | 3 | 浅绿 |
| 深蓝 | 2 | 深蓝 |
| 黑 | 2 | 黑 |
| 绿 | 1 | 绿 |
import matplotlib.pyplot as plt
import plotly.express as px
import numpy as np# Linux show Chinese characters *** important
plt.rcParams['font.family'] = 'WenQuanYi Micro Hei' fig = px.bar(df, x="颜色", y="count", title="颜色类别计数")
# center title
fig.update_layout(title_x=0.5)
# remove background color
fig.update_layout({
'plot_bgcolor': 'rgba(0, 0, 0, 0)',
'paper_bgcolor': 'rgba(0, 0, 0, 0)',
})fig.show()

扇形图
print(d1['纹饰'].value_counts())
纹饰
C 30
A 22
B 6
Name: count, dtype: int64
import plotly.express as px
fig = px.pie(d1, names='纹饰', title="玻璃纹饰类别的比例分布")
# center title
fig.update_layout(title_x=0.5)
fig.show()

print(d1['类型'].value_counts())
fig = px.pie(d1, names='类型', title="玻璃类型的比例分布")
# center title
fig.update_layout(title_x=0.5)
fig.show()
类型
铅钡 40
高钾 18
Name: count, dtype: int64

print(d1['颜色'].value_counts())
fig = px.pie(d1, names='颜色', title="玻璃颜色的比例分布")
# center title
fig.update_layout(title_x=0.5)
fig.show()
颜色
浅蓝 20
蓝绿 15
深绿 7
紫 4
浅绿 3
深蓝 2
黑 2
绿 1
Name: count, dtype: int64

print(d1['表面风化'].value_counts())
fig = px.pie(d1, names='表面风化', title="表面风化和未风化的比例分布")
# center title
fig.update_layout(title_x=0.5)
fig.show()
表面风化
风化 34
无风化 24
Name: count, dtype: int64

雷达图
https://plotly.com/python/radar-chart/
df = pd.DataFrame(d1['颜色'].value_counts())
df['颜色'] = df.index
df
| count | 颜色 | |
|---|---|---|
| 颜色 | ||
| 浅蓝 | 20 | 浅蓝 |
| 蓝绿 | 15 | 蓝绿 |
| 深绿 | 7 | 深绿 |
| 紫 | 4 | 紫 |
| 浅绿 | 3 | 浅绿 |
| 深蓝 | 2 | 深蓝 |
| 黑 | 2 | 黑 |
| 绿 | 1 | 绿 |
import plotly.express as px
import pandas as pd
plt.rcParams['figure.dpi'] = 300
plt.rcParams['savefig.dpi'] = 300fig = px.line_polar(df, r='count', theta='颜色', line_close=False,title="颜色各类别计数")
fig.update_traces(fill='toself')
# center title
fig.update_layout(title_x=0.5)
fig.show()

表面风化 vs 纹饰

Cramer’s V 相关分析
Cramer’s V: 用于计算名义分类变量之间的相关性。
理论:
https://www.ibm.com/docs/en/cognos-analytics/11.1.0?topic=terms-cramrs-v
代码:
https://www.geeksforgeeks.org/how-to-calculate-cramers-v-in-python/
crosstab = pd.crosstab(d1['表面风化'],d1['纹饰'])# dataframe to numpy
d = crosstab.to_numpy()
d
array([[11, 0, 13],[11, 6, 17]])
import scipy.stats as stats
import numpy as np X2 = stats.chi2_contingency(d, correction=False)[0]
N = np.sum(d)
minimum_dimension = min(d.shape)-1# Calculate Cramer's V
result = np.sqrt((X2/N) / minimum_dimension) 'Cramer’s V 相关系数 表面风化 vs 纹饰 = ' + str(result)
'Cramer’s V 相关系数 表面风化 vs 纹饰 = 0.29233117579189066'
crosstab = pd.crosstab(d1['表面风化'],d1['类型'])
d = crosstab.to_numpy()X2 = stats.chi2_contingency(d, correction=False)[0]
N = np.sum(d)
minimum_dimension = min(d.shape)-1# Calculate Cramer's V
result = np.sqrt((X2/N) / minimum_dimension) 'Cramer’s V 相关系数 表面风化 vs 类型 = ' + str(result)
'Cramer’s V 相关系数 表面风化 vs 类型 = 0.3444233600968322'
crosstab = pd.crosstab(d1['表面风化'],d1['颜色'])
d = crosstab.to_numpy()X2 = stats.chi2_contingency(d, correction=False)[0]
N = np.sum(d)
minimum_dimension = min(d.shape)-1# Calculate Cramer's V
result = np.sqrt((X2/N) / minimum_dimension) 'Cramer’s V 相关系数 表面风化 vs 颜色 = ' + str(result)
'Cramer’s V 相关系数 表面风化 vs 颜色 = 0.34121631178560535'
统计检验
列联表分析
crosstab = pd.crosstab(d1['表面风化'],d1['纹饰'])
crosstab
| 纹饰 | A | B | C |
|---|---|---|---|
| 表面风化 | |||
| 无风化 | 11 | 0 | 13 |
| 风化 | 11 | 6 | 17 |
卡方检验
https://www.geeksforgeeks.org/python-pearsons-chi-square-test/
import scipy.stats
from scipy.stats import chi2_contingency
# 表面风化 vs 纹饰
crosstab = pd.crosstab(d1['表面风化'],d1['纹饰'])
stat, p, dof, expected = chi2_contingency(crosstab)
# interpret p-value
alpha = 0.05
print("p value is " + str(p))
if p <= alpha:print('Dependent (reject H0)')
else:print('Independent (H0 holds true)')
p value is 0.08388839673210007
Independent (H0 holds true)
# 表面风化 vs 类型
crosstab = pd.crosstab(d1['表面风化'],d1['类型'])
stat, p, dof, expected = chi2_contingency(crosstab)
# interpret p-value
alpha = 0.05
print("p value is " + str(p))
if p <= alpha:print('Dependent (reject H0)')
else:print('Independent (H0 holds true)')
p value is 0.019548014331003307
Dependent (reject H0)
# 表面风化 vs 颜色
crosstab = pd.crosstab(d1['表面风化'],d1['颜色'])
stat, p, dof, expected = chi2_contingency(crosstab)
# interpret p-value
alpha = 0.05
print("p value is " + str(p))
if p <= alpha:print('Dependent (reject H0)')
else:print('Independent (H0 holds true)')
p value is 0.5066496855976865
Independent (H0 holds true)
Fisher检验
pd.crosstab(d1['表面风化'],d1['颜色'])
| 颜色 | 浅绿 | 浅蓝 | 深绿 | 深蓝 | 紫 | 绿 | 蓝绿 | 黑 |
|---|---|---|---|---|---|---|---|---|
| 表面风化 | ||||||||
| 无风化 | 2 | 8 | 3 | 2 | 2 | 1 | 6 | 0 |
| 风化 | 1 | 12 | 4 | 0 | 2 | 0 | 9 | 2 |
import FisherExact as fsprint('表面风化 vs 颜色')
print(fs.fisher_exact(pd.crosstab(d1['表面风化'],d1['颜色'])))
表面风化 vs 颜色
0.0
绘图
堆积条形图
表面风化 vs 纹饰
crosstab = pd.crosstab(d1['表面风化'],d1['纹饰'])
crosstab
| 纹饰 | A | B | C |
|---|---|---|---|
| 表面风化 | |||
| 无风化 | 11 | 0 | 13 |
| 风化 | 11 | 6 | 17 |
dp = [['无风化', '纹饰A', 11], ['无风化', '纹饰B', 0],['无风化', '纹饰C', 13],['风化', '纹饰A', 11],['风化', '纹饰B', 6],['风化', '纹饰C', 17]]# Create the pandas DataFrame
df = pd.DataFrame(dp, columns=['表面风化', '纹饰', '计数'])
df
| 表面风化 | 纹饰 | 计数 | |
|---|---|---|---|
| 0 | 无风化 | 纹饰A | 11 |
| 1 | 无风化 | 纹饰B | 0 |
| 2 | 无风化 | 纹饰C | 13 |
| 3 | 风化 | 纹饰A | 11 |
| 4 | 风化 | 纹饰B | 6 |
| 5 | 风化 | 纹饰C | 17 |
import matplotlib.pyplot as plt
import plotly.express as px
import numpy as np# Linux show Chinese characters *** important
plt.rcParams['font.family'] = 'WenQuanYi Micro Hei' fig = px.bar(df, x="表面风化", y="计数", color="纹饰", title="表面风化与纹饰的关系")
# center title
fig.update_layout(title_x=0.5)
# remove background color
fig.update_layout({
'plot_bgcolor': 'rgba(0, 0, 0, 0)',
'paper_bgcolor': 'rgba(0, 0, 0, 0)',
})fig.show()

表面风化 vs 玻璃类型
crosstab = pd.crosstab(d1['表面风化'],d1['类型'])
crosstab
| 类型 | 铅钡 | 高钾 |
|---|---|---|
| 表面风化 | ||
| 无风化 | 12 | 12 |
| 风化 | 28 | 6 |
dp = [['无风化', '铅钡', 12], ['无风化', '高钾', 12],['风化', '铅钡', 28],['风化', '高钾', 6]]# Create the pandas DataFrame
df = pd.DataFrame(dp, columns=['表面风化', '玻璃类型', '计数'])
df
| 表面风化 | 玻璃类型 | 计数 | |
|---|---|---|---|
| 0 | 无风化 | 铅钡 | 12 |
| 1 | 无风化 | 高钾 | 12 |
| 2 | 风化 | 铅钡 | 28 |
| 3 | 风化 | 高钾 | 6 |
fig = px.bar(df, x="表面风化", y="计数", color="玻璃类型", title="表面风化与玻璃类型的关系")
# center title
fig.update_layout(title_x=0.5)
# remove background color
fig.update_layout({
'plot_bgcolor': 'rgba(0, 0, 0, 0)',
'paper_bgcolor': 'rgba(0, 0, 0, 0)',
})fig.show()

表面风化 vs 颜色
crosstab = pd.crosstab(d1['表面风化'],d1['颜色'])
crosstab
| 颜色 | 浅绿 | 浅蓝 | 深绿 | 深蓝 | 紫 | 绿 | 蓝绿 | 黑 |
|---|---|---|---|---|---|---|---|---|
| 表面风化 | ||||||||
| 无风化 | 2 | 8 | 3 | 2 | 2 | 1 | 6 | 0 |
| 风化 | 1 | 12 | 4 | 0 | 2 | 0 | 9 | 2 |
col1 = pd.DataFrame(['无风化'] * crosstab.shape[1] + ['风化'] * crosstab.shape[1])
col2 = pd.DataFrame(list(crosstab.columns) * 2)
col3 = pd.DataFrame(list(crosstab.iloc[0]) + list(crosstab.iloc[1]))df = pd.concat([col1, col2, col3], axis=1)
df.columns = ['表面风化', '颜色', '计数']
df
| 表面风化 | 颜色 | 计数 | |
|---|---|---|---|
| 0 | 无风化 | 浅绿 | 2 |
| 1 | 无风化 | 浅蓝 | 8 |
| 2 | 无风化 | 深绿 | 3 |
| 3 | 无风化 | 深蓝 | 2 |
| 4 | 无风化 | 紫 | 2 |
| 5 | 无风化 | 绿 | 1 |
| 6 | 无风化 | 蓝绿 | 6 |
| 7 | 无风化 | 黑 | 0 |
| 8 | 风化 | 浅绿 | 1 |
| 9 | 风化 | 浅蓝 | 12 |
| 10 | 风化 | 深绿 | 4 |
| 11 | 风化 | 深蓝 | 0 |
| 12 | 风化 | 紫 | 2 |
| 13 | 风化 | 绿 | 0 |
| 14 | 风化 | 蓝绿 | 9 |
| 15 | 风化 | 黑 | 2 |
fig = px.bar(df, x="表面风化", y="计数", color="颜色", title="表面风化与颜色的关系")
# center title
fig.update_layout(title_x=0.5)
# remove background color
fig.update_layout({
'plot_bgcolor': 'rgba(0, 0, 0, 0)',
'paper_bgcolor': 'rgba(0, 0, 0, 0)',
})fig.show()

分组条形图
fig = px.bar(df, x="表面风化", y="计数", color="颜色", title="表面风化与颜色的关系", barmode='group')
# center title
fig.update_layout(title_x=0.5)
# remove background color
fig.update_layout({
'plot_bgcolor': 'rgba(0, 0, 0, 0)',
'paper_bgcolor': 'rgba(0, 0, 0, 0)',
})fig.show()

分类模型
Logistic回归
https://www.w3schools.com/python/python_ml_logistic_regression.asp
import sklearn
import warnings
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn import linear_modeld1['颜色'].fillna('浅蓝', inplace=True)
df = d1.iloc[:,1:5]
# data encode
label_encoder = LabelEncoder()
df_encode = df.select_dtypes(include=['object']).apply(label_encoder.fit_transform)
df_encode.head()
| 纹饰 | 类型 | 颜色 | 表面风化 | |
|---|---|---|---|---|
| 0 | 2 | 1 | 6 | 0 |
| 1 | 0 | 0 | 1 | 1 |
| 2 | 0 | 1 | 6 | 0 |
| 3 | 0 | 1 | 6 | 0 |
| 4 | 0 | 1 | 6 | 0 |
X = df_encode.drop('表面风化', axis=1)
y = df_encode['表面风化']logr = linear_model.LogisticRegression()
logr.fit(X,y)print('截距项 = ' + str(logr.intercept_))log_odds = logr.coef_
odds = numpy.exp(log_odds)
print('回归系数= ' + str(odds))
截距项 = [0.20030893]
回归系数= [[1.12409879 0.24081195 1.1795666 ]]
随机森林
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
import pandas as pd
#import shap
from sklearn.metrics import accuracy_score
import numpy as np
clf = RandomForestClassifier(n_estimators=100, random_state=42)
clf.fit(X, y)importances = clf.feature_importances_
feature_imp_df = pd.DataFrame({'变量名': X.columns, '重要性程度': importances}).sort_values('重要性程度', ascending=True)
feature_imp_df
| 变量名 | 重要性程度 | |
|---|---|---|
| 0 | 纹饰 | 0.270358 |
| 1 | 类型 | 0.297645 |
| 2 | 颜色 | 0.431998 |
import matplotlib.pyplot as plt
import plotly.express as px
import numpy as np# Linux show Chinese characters *** important
plt.rcParams['font.family'] = 'WenQuanYi Micro Hei' fig = px.bar(feature_imp_df, y="变量名", x="重要性程度",title="表面风化与其玻璃类型、纹饰和颜色的关系强度", orientation='h')
# center title
fig.update_layout(title_x=0.5)
# remove background color
fig.update_layout({
'plot_bgcolor': 'rgba(0, 0, 0, 0)',
'paper_bgcolor': 'rgba(0, 0, 0, 0)',
})fig.show()

相关阅读:
- 2022高教社杯全国大学生数学建模竞赛C题 问题一(2) Python代码
- 2022高教社杯全国大学生数学建模竞赛C题 问题一(3) Python代码
- 2023高教社杯全国大学生数学建模竞赛C题 Python代码
相关文章:
2022高教社杯全国大学生数学建模竞赛C题 问题一(1) Python代码
目录 问题 11.1 对这些玻璃文物的表面风化与其玻璃类型、纹饰和颜色的关系进行分析数据探索 -- 单个分类变量的绘图树形图条形图扇形图雷达图 Cramer’s V 相关分析统计检验列联表分析卡方检验Fisher检验 绘图堆积条形图分组条形图 分类模型Logistic回归随机森林 import matplo…...
【3D打印】3D打印机运动控制“Gcode”
一、Gcode是什么? Gcode是一种用于控制数控机床(包括3D打印机)的语言。它由一系列指令组成,每个指令控制机器的一个特定动作。 二、基础术语 G指令:用于控制机器的运动。M指令:用于控制机器的其他功能&a…...
针对Chsrc换源工具的简单脚本
此脚本目前只是针对 X86和aarch64系统,可根据自身需求进行修改,点赞自取 关于工具的详细介绍请看上一篇文章:全平台通用的换源工具Chsrc #!/bin/bashtag1"https://gitee.com/RubyMetric/chsrc/releases/download/pre/chsrc-x64-linux&…...
vscode中如何配置c/c++环境
“批判他人总是想的太简单 剖析自己总是想的太困难” 文章目录 前言文章有误敬请斧正 不胜感恩!一、准备工作二、安装 VSCode 插件三、配置 VSCode1. 配置编译任务(tasks.json)2. 配置调试器(launch.json) 四、运行和调…...
【梯度消失|梯度爆炸】Vanishing Gradient|Exploding Gradient——为什么我的卷积神经网络会不好呢?
【梯度消失|梯度爆炸】Vanishing Gradient|Exploding Gradient——为什么我的卷积神经网络会不好呢? 【梯度消失|梯度爆炸】Vanishing Gradient|Exploding Gradient——为什么我的卷积神经网络会不好呢? 文章目录 【梯度消失|梯度爆炸】Vanishing Gradi…...
MAC 地址简化概念(有线 MAC 地址、无线 MAC 地址、MAC 地址的随机化)
一、MAC 地址 MAC 地址(Media Access Control Address),即媒体访问控制地址,也称为物理地址、硬件地址或链路层地址 MAC 地址有时也被称为物理地址,但这并不意味着 MAC 地址属于网络体系结构中的物理层,它…...
SQL_yog安装和使用演示--mysql三层结构
目录 1.什么是SQL_yog 2.下载安装 3.页面介绍 3.1链接主机 3.2创建数据库 3.3建表操作 3.4向表里面填内容 3.5使用指令查看效果 4.连接mysql的指令 4.1前提条件 4.2链接指令 编辑 4.3创建时的说明 4.4查看是不是连接成功 5.mysql的三层结构 1.什么是SQL_yog 我…...
蓝桥杯-STM32G431RBT6(解决LCD与LED引脚冲突的问题)
一、LCD与LED为什么会引脚冲突 LCD与LED引脚共用。 网上文章是在LCD_WriteRAM、LCD_WriteRAM_Prepare、LCD_WriteReg中添加,但问题并没有解决。 二、使用步骤 在如下函数中加入uint16_t tempGPIOC->ODR; GPIOC->ODRtemp; LCD_Init(); void LCD_C…...
ESP-01S,ESP8266设置客户端透传模式
ESP-01S,ESP8266设置透传(透明传输)模式 例子 ATCWMODE_DEF1 //station模式 ATRST //重启 ATCWLAP //查看周围热点 ATCWJAP_DEF"ssid","password" //连接热点 ATCIFSR //查看ip ATCIPSTA_DEF"192.168.82.66","192.168.6.1&…...
NFT Insider #147:Sandbox 人物化身九月奖励上线;Catizen 付费用户突破百万
市场数据 加密艺术及收藏品新闻 Doodles 动画特别剧《Dullsville and The Doodleverse》在多伦多国际电影节首映 Doodles 最近在多伦多国际电影节(TIFF)首映了其动画特别剧《Dullsville and The Doodleverse》,这是该品牌的一个重要里程碑。…...
103.WEB渗透测试-信息收集-FOFA语法(3)
免责声明:内容仅供学习参考,请合法利用知识,禁止进行违法犯罪活动! 内容参考于: 易锦网校会员专享课 上一个内容:102.WEB渗透测试-信息收集-FOFA语法(2) FOFA使用实例 组件框架 …...
SpringDataJPA基础增删改查
添加:save(对象) 删除:delete(主键或者带有主键的对象) 修改:save(对象) 对象中没有id,执行添加操作 对象中有id id不存在:执行添加 id存在: 其余数据…...
好代码网同款wordpress主题,完全开源无加密可二开
这个其实就是好代码网站的早期整站打包代码,当时售价198的,现在里面的部分数据已经过期了,只能展示效果,没法下载。所以就只当做主题分享给大家使用。 资源下载类网站目前还是红利期,搞个特价主机和域名,再…...
如何在@GenericGenerator中显式指定schema
现在的情况是,在MySQL中有db1和db2两个数据库。项目使用Hibernate,可同时访问db1和db2,默认数据库为db1。表table2在db2中。且table2的主键名为ids,是自增长字段(Auto Increment)。 table2和ids的定义为&a…...
感知器神经网络
1、原理 感知器是一种前馈人工神经网络,是人工神经网络中的一种典型结构。感知器具有分层结构,信息从输入层进入网络,逐层向前传递至输出层。根据感知器神经元变换函数、隐层数以及权值调整规则的不同,可以形成具有各种功能特点的…...
【C++】——继承详解
目录 1、继承的概念与意义 2、继承的使用 2.1继承的定义及语法 2.2基类与派生类间的转换 2.3继承中的作用域 2.4派生类的默认成员函数 <1>构造函数 <2>拷贝构造函数 <3>赋值重载函数 <4析构函数 <5>总结 3、继承与友元 4、继承与静态变…...
RocketMQ 消费方式
在消息传递系统中,“推(Push)”和“拉(Pull)”是两种不同的消息消费方式,RocketMQ 也支持这两种模式。下面是对这两种模式的详细解释: 1. 推模式(Push Model) 模式简介…...
初始爬虫7
针对数据提取的项目实战: 补充初始爬虫6的一个知识点: etree.tostring能够自动补全html缺失的标签,显示原始的HTML结构 # -*- coding: utf-8 -*- from lxml import etreetext <div> <ul> <li class"item-1">…...
深入理解Appium定位策略与元素交互
深入理解Appium定位策略与元素交互 在移动应用测试领域,Appium作为一款流行的跨平台自动化测试工具,其强大而灵活的元素定位能力对于构建稳定、高效的测试脚本至关重要。本文将深入探讨Appium支持的各种定位方法,并分享如何通过高级技巧和最…...
java基础面试题总结
java基础面试题总结 目录 前言 1. JVM vs JDK vs JRE的了解 2. 谈谈你对编程、编译、运行的理解 3. 什么是字节码?采用字节码的好处是什么? 5. java中的注解有几种,分别是什么? 6. 字符型常量和字符串常量 7.标识符和关键字的认识 8. 泛型ÿ…...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...
el-switch文字内置
el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...
深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南
🚀 C extern 关键字深度解析:跨文件编程的终极指南 📅 更新时间:2025年6月5日 🏷️ 标签:C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言🔥一、extern 是什么?&…...
OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...
