[强化你的LangChain工具创建技能:从基础到进阶]
强化你的LangChain工具创建技能:从基础到进阶
在现代AI开发中,为语言模型和智能代理提供工具是提升其功能的关键一步。本指南将带你深入了解如何在LangChain中创建工具,从简单的函数到复杂的可配置工具。
引言
在构建智能代理时,开发者需要提供一组工具供其使用。工具的构建不仅需要考虑其功能,还需确保其具有良好的描述和参数验证,以便模型能够有效地理解和调用这些工具。
主要内容
工具的基本组成
一个工具通常包含以下几个部分:
- 名称:必须在工具集中唯一。
- 描述:描述工具的功能,供模型上下文使用。
- 参数模式(args_schema):可选的Pydantic BaseModel,用于提供参数验证。
- 直接返回(return_direct):仅对代理相关,指示调用工具后是否直接返回结果。
从函数创建工具
使用@tool
装饰器
这是定义自定义工具的最简单方式。装饰器使用函数名称作为工具名称,并使用函数的文档字符串作为工具描述。
from langchain_core.tools import tool@tool
def multiply(a: int, b: int) -> int:"""Multiply two numbers."""return a * bprint(multiply.name)
print(multiply.description)
print(multiply.args)
异步实现
你可以创建异步实现,使工具在异步环境中表现更好。
from langchain_core.tools import tool@tool
async def amultiply(a: int, b: int) -> int:"""Multiply two numbers."""return a * b
使用StructuredTool
进行更复杂的配置
如果需要更灵活的配置,可以使用StructuredTool.from_function
方法。
from langchain.pydantic_v1 import BaseModel, Field
from langchain_core.tools import StructuredToolclass CalculatorInput(BaseModel):a: int = Field(description="first number")b: int = Field(description="second number")def multiply(a: int, b: int) -> int:"""Multiply two numbers."""return a * bcalculator = StructuredTool.from_function(func=multiply,args_schema=CalculatorInput,return_direct=True
)print(calculator.invoke({"a": 2, "b": 3}))
代码示例
下面给出一个完整的代码示例,展示如何利用LangChain创建一个简单的智能计算工具:
from langchain_core.tools import StructuredTool
from langchain.pydantic_v1 import BaseModel, Fieldclass CalculatorInput(BaseModel):a: int = Field(description="第一个数字")b: int = Field(description="第二个数字")def multiply(a: int, b: int) -> int:"""两个数相乘。"""return a * bcalculator = StructuredTool.from_function(func=multiply,args_schema=CalculatorInput,return_direct=True
)print(calculator.invoke({"a": 5, "b": 7})) # 输出: 35
常见问题和解决方案
错误处理
在使用工具时可能会遇到异常情况,可以通过设置handle_tool_error
来处理。
from langchain_core.tools import ToolExceptiondef get_weather(city: str) -> int:"""获取指定城市的天气。"""raise ToolException(f"错误:没有名为 {city} 的城市。")weather_tool = StructuredTool.from_function(func=get_weather,handle_tool_error="没有找到该城市,可能温度高于0K!"
)print(weather_tool.invoke({"city": "foobar"}))
总结和进一步学习资源
本文介绍了如何为LangChain模型创建简单和复杂的工具。通过掌握这些技术,你可以更好地为智能代理提供强大的功能支持。
- Pydantic文档
- LangChain官方指南
参考资料
- LangChain官方指南
- Pydantic文档
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—
相关文章:
[强化你的LangChain工具创建技能:从基础到进阶]
强化你的LangChain工具创建技能:从基础到进阶 在现代AI开发中,为语言模型和智能代理提供工具是提升其功能的关键一步。本指南将带你深入了解如何在LangChain中创建工具,从简单的函数到复杂的可配置工具。 引言 在构建智能代理时࿰…...

4.提升客户服务体验:ChatGPT在客服中的应用(4/10)
本文大纲旨在指导撰写一篇全面探讨ChatGPT如何通过优化客户服务流程、提供实际应用案例和用户反馈,以提升客户服务体验的深入博客文章。 引言 在当今竞争激烈的商业环境中,客户服务已成为企业成功的关键因素。优质的客户服务不仅能够增强客户满意度和忠…...
Gradio导入AIGC大模型创建web端智能体聊天机器人,python(2)
Gradio导入AIGC大模型创建web端智能体聊天机器人,python(2) 选用这个大模型: https://huggingface.co/HuggingFaceTB/SmolLM-1.7B-Instructhttps://huggingface.co/HuggingFaceTB/SmolLM-1.7B-Instruct原因是该模型相对比较小&am…...
PEM 格式
文章目录 1.简介2.格式和内容3.常见用途4.标准化5.示例参考文献 1.简介 .pem 文件扩展名代表“Privacy Enhanced Mail”,但它被用于比电子邮件更广泛的上下文中,主要关联于加密、SSL/TLS 和证书管理。PEM 格式是一种用于存储和发送加密信息的标准&#…...
Android前台服务如何在后台启动activity?
本来最近在开发一个app保活另外一个app的功能,方案介绍如下: 应用A 启动一个前台服务保活自己应用A 用grpc连接应用B(服务端)是否存活如果发现B不存活,则在服务中拉起B 这次没有做好调研,直接开始了开发工作,等grpc都…...
c#visionpro开发 方法统计
toolblock开发 vpp第二种简单加载方式 public Cognex.VisionPro.ToolBlock.CogToolBlock ToolBlock1;//初始化后实例化一个方法 //窗口运行程序内部 ToolBlock1 (CogToolBlock)CogSerializer.LoadObjectFromFile(“tjjc.vpp”); MessageBox.Show(“算法加载成功”);//复制一个…...

dedecms——四种webshell姿势
姿势一:通过文件管理器上传WebShell 步骤一:访问目标靶场其思路为 dedecms 后台可以直接上传任意文件,可以通过文件管理器上传php文件获取webshell 步骤二:登陆到后台点击【核心】--》 【文件式管理器】--》 【文件上传】将准备好…...
GO GIN 推荐的库
在使用 Go 和 Gin 框架进行 Web 开发时,有许多第三方库可以增强功能和提高开发效率。以下是一些常用的、与 Gin 搭配使用的库: 1. 数据处理与验证 go-playground/validator 用于结构体字段的验证,Gin 默认已经集成了它。它提供了丰富的验证…...

YOLOv9改进策略【卷积层】| GnConv:一种通过门控卷积和递归设计来实现高效、可扩展、平移等变的高阶空间交互操作
一、本文介绍 本文记录的是利用GnConv优化YOLOv9的目标检测方法研究。YOLOv9在进行目标检测时,需要对不同层次的特征进行融合。GnConv可以考虑更高阶的空间交互,能够更好地捕捉特征之间的复杂关系,从而增强特征融合的效果,提高模…...

如何在Linux下升级R版本和RStudio
一、升级R版本 在Linux上,R的安装通常通过包管理器完成。不同的Linux发行版(如Ubuntu、Debian、Fedora等)可能略有不同。下面以Ubuntu为例,介绍如何升级R版本。如果你使用其他发行版,步骤可能类似。 二.更新步骤 2.…...

npm安装时候报错certificate has expired
打开了一个很久没用的电脑,npm和node都装好了,安装包的时候一直报错 request to https://registry.npm.taobao.org/create-react-app failed, reason: certificate has expired而且先报错rollbackFailedOptional 然而npm没什么问题,是ssl过…...

CSP-J_S第一轮复习资料1·计算机硬件
下一章...
oracle 表的外键
表的外键 3.5.1表之间的三种关系 在数据库设计中,工作中经常会分析商业逻辑中的表的设计。在设计表的关系之前,需要先了解关系型数据库特点。关系数据库有如下特点: 关系型数据库采用了关系模型来组织数据的数据库。 关系型数据库的最大特点…...

加密与安全_优雅存储二要素(AES-256-GCM )
文章目录 什么是二要素如何保护二要素(姓名和身份证)加密算法分类场景选择算法选择AES - ECB 模式 (不推荐)AES - CBC 模式 (推荐)GCM(Galois/Counter Mode)AES-256-GCM简介AES-256-GCM工作原理安全优势 应用场景其他模式 和 敏感…...

【C++高阶】解锁C++的深层魅力——探索特殊类的奥秘
📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C “ 登神长阶 ” 🤡往期回顾🤡:C 类型转换 🌹🌹期待您的关注 🌹🌹 ❀C特殊类 📒1. 不能被拷贝…...

Vue学习记录之三(ref全家桶)
ref、reactive是在 setup() 声明组件内部状态用的, 这些变量通常都要 return 出去,除了供 < template > 或渲染函数渲染视图,也可以作为 props 或 emit 参数 在组件间传递。它们的值变更可触发页面渲染。 ref :是一个函数&…...

第二十六篇——九地篇:九种形势的应对之道
目录 一、背景介绍二、思路&方案三、过程1.思维导图2.文章中经典的句子理解3.学习之后对于投资市场的理解4.通过这篇文章结合我知道的东西我能想到什么? 四、总结五、升华 一、背景介绍 地势的维度重新阐述了懂得人心的重要性,道久其归一为为别人。…...
学习记录:js算法(三十七): 搜索二维矩阵
文章目录 搜索二维矩阵我的思路网上思路 总结 搜索二维矩阵 给你一个满足下述两条属性的 m x n 整数矩阵: ● 每行中的整数从左到右按非严格递增顺序排列。 ● 每行的第一个整数大于前一行的最后一个整数。 给你一个整数 target ,如果 target 在矩阵中&a…...

拥控算法BBR入门1
拥塞控制算法只与本地有关 一个TCP会话使用的拥塞控制算法只与本地有关。 两个TCP系统可以在TCP会话的两端使用不同的拥塞控制算法 Bottleneck Bandwidth and Round-trip time Bottleneck 瓶颈 BBR models the network to send as fast as the available bandwidth and is 2…...

[Python数据可视化]Plotly Express: 地图数据可视化的魅力
在数据分析和可视化的世界中,地图数据可视化是一个强大而直观的工具,它可以帮助我们更好地理解和解释地理数据。Python 的 Plotly Express 库提供了一个简单而强大的方式来创建各种地图。本文将通过一个简单的示例,展示如何使用 Plotly Expre…...

基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...

windows系统MySQL安装文档
概览:本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容,为学习者提供全面的操作指导。关键要点包括: 解压 :下载完成后解压压缩包,得到MySQL 8.…...

数据结构:递归的种类(Types of Recursion)
目录 尾递归(Tail Recursion) 什么是 Loop(循环)? 复杂度分析 头递归(Head Recursion) 树形递归(Tree Recursion) 线性递归(Linear Recursion)…...

ZYNQ学习记录FPGA(一)ZYNQ简介
一、知识准备 1.一些术语,缩写和概念: 1)ZYNQ全称:ZYNQ7000 All Pgrammable SoC 2)SoC:system on chips(片上系统),对比集成电路的SoB(system on board) 3)ARM:处理器…...

yaml读取写入常见错误 (‘cannot represent an object‘, 117)
错误一:yaml.representer.RepresenterError: (‘cannot represent an object’, 117) 出现这个问题一直没找到原因,后面把yaml.safe_dump直接替换成yaml.dump,确实能保存,但出现乱码: 放弃yaml.dump,又切…...
Cursor AI 账号纯净度维护与高效注册指南
Cursor AI 账号纯净度维护与高效注册指南:解决限制问题的实战方案 风车无限免费邮箱系统网页端使用说明|快速获取邮箱|cursor|windsurf|augment 问题背景 在成功解决 Cursor 环境配置问题后,许多开发者仍面临账号纯净度不足导致的限制问题。无论使用 16…...