Python热频随机森林分类器算法模型模拟
🎯要点
- 研究发射测量斜率和时滞热频率表征,使用外推法计算三维磁场并定性比较
- 使用基于焓的热演化环模型模拟每条线的热力学响应,测试低频、中频和高频热场景
- 使用光学薄、高温、低密度等离子体的单位体积辐射功率或发射率公式等建模计算
- 使用直方图显示发射测量斜率,计算互相关映射
🍪语言内容分比
🍇Python随机森林模型
引导聚合
在需要良好模型可解释性的应用中,决策树效果非常好,尤其是在深度较小的情况下。然而,具有真实世界数据集的决策树具有很大的深度,深度较高的决策树更容易过度拟合,从而导致模型的方差更大。随机森林模型探索了决策树的这一缺点。在随机森林模型中,原始训练数据是随机抽样并替换的,从而生成小的数据子集(见下图)。这些子集也称为引导样本。然后,这些引导样本作为训练数据输入到许多大深度的决策树中。每个决策树都基于这些引导样本单独训练。这种决策树的聚合称为随机森林集成。集成模型的最终结果通过计算所有决策树的多数票来确定。由于每个决策树都以不同的训练数据集作为输入,因此原始训练数据集中的偏差不会影响从决策树聚合中获得的最终结果。
生成有放回的引导样本:
随机森林算法
随机森林算法有三个主要超参数,需要在训练之前设置。这些包括节点大小、树的数量和采样的特征数量。从这里开始,随机森林分类器可用于解决回归或分类问题。随机森林算法由一组决策树组成,集合中的每棵树都由从有替换训练集中抽取的数据样本组成,称为引导样本。在该训练样本中,三分之一被留作测试数据,称为袋外样本。然后通过特征装袋注入另一个随机性实例,为数据集增加更多多样性并降低决策树之间的相关性。根据问题的类型,预测的确定会有所不同。对于回归任务,将对各个决策树进行平均,对于分类任务,多数投票(即最常见的分类变量)将产生预测类。最后,然后使用袋外样本进行交叉验证,最终确定该预测。
随机森林算法结合了 (1) 引导聚合和 (2) 特征随机性,使用同一数据集构建许多决策树。
- 引导聚合是一种在给定迭代次数和变量(引导样本)内随机抽取数据子集的技术。通常对所有迭代和样本的预测进行平均,以获得最可能的结果。重要的是要理解,它不是将数据“分块”成小块并在其上训练单个树,而是仍然保持初始数据大小。这是一个应用集成模型的示例。
- 特征随机性的主要作用是降低决策树模型之间的相关性。与可以利用所有特征来辨别最佳节点分割的决策树相比,随机森林算法将随机选择这些特征进行决策。最终,这也允许在不同的特征上进行训练。
Python分类器
import pandas as pd
import numpy as np
from umap import UMAP
import seaborn as sns
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1.anchored_artists import AnchoredSizeBar
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from sklearn.cluster import AgglomerativeClustering
from sklearn.neighbors import kneighbors_graph
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_samples, silhouette_score
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
mypath = '*insert file path/waveforms.csv'
data = pd.read_csv(mypath, index_col = 'uid')
print(f'{data.shape[0]} unique experiment identifiers (uid), recorded with a sampling frequency (KHz) of {((data.shape[1]-1)/5)}')
data.organoid.value_counts()
定义可视化颜色
mycolors = {'Data_D': '#FFA500','Data_G': '#4169E1', 'Data_F': '#FF4500', 'Data_C': '#9400D3', 'Data_A': '#32CD32', 'Data_E': '#228B22', 'Data_G_V2' : '#006400', 'Data_H': '#00BFFF', 'Data_E_V2': '#DC143C', 'Data_F_V2': '#0000FF', 'Data_B': '#000000', }
data['color'] = data['organoid'].apply(lambda orgID: mycolors[orgID])
可视化唯一的实验标识符
fig, ax = plt.subplots(figsize=(15, 8))
sns.barplot(x=data.organoid.value_counts().index, y=data.organoid.value_counts(), palette=mycolors)plt.xticks(rotation=30,fontsize=14)
plt.yticks(fontsize=14)
ax.set_xlabel('Class type', fontsize=16)
ax.set_ylabel('Number of waveforms', fontsize=16)
plt.rcParams["font.family"] = "Arial"right_side = ax.spines["right"]
right_side.set_visible(False)
top_side = ax.spines["top"]
top_side.set_visible(False)
plt.savefig('Figures/barplot.png', dpi = 300, bbox_inches="tight")
plt.show()
鉴于我们正在分析细胞外记录,我们将可视化每个数据集类别产生的平均波形。
class_names = data['organoid'].unique()
fig, ax = plt.subplots(1,9, figsize=(24,4.5))
for unique_class in class_names: df_new = data[data['organoid'] == unique_class] df_new = df_new.iloc[:,:-2].to_numpy() data_mean_perclass = np.mean(df_new, axis=0)sampling_freq = np.linspace(0, 5, 150)
for i in range(class_names.shape[0]): if unique_class == class_names[i]:for row_num in range(df_new.shape[0]): ax[i].plot(sampling_freq, df_new[row_num,:], color = 'lightgray')ax[i].plot(sampling_freq,data_mean_perclass, color=mycolors[unique_class], linewidth=3)ax[i].set_ylim([-1.8, 1.8])ax[i].grid()ax[i].axis('off')ax[i].title.set_text(unique_class) plt.rcParams["font.family"] = "Arial"else: continuescalebar = AnchoredSizeBar(ax[8].transData, 1, "1 ms", 'lower right', frameon=False, size_vertical=0.02, pad=0.1)ax[8].add_artist(scalebar)plt.savefig('Figures/spikes.png', dpi = 300)
👉参阅、更新:计算思维 | 亚图跨际
相关文章:

Python热频随机森林分类器算法模型模拟
🎯要点 研究发射测量斜率和时滞热频率表征,使用外推法计算三维磁场并定性比较使用基于焓的热演化环模型模拟每条线的热力学响应,测试低频、中频和高频热场景使用光学薄、高温、低密度等离子体的单位体积辐射功率或发射率公式等建模计算使用直…...

C++11新增特性:lambda表达式、function包装器、bind绑定
一、lambda表达式 1)、为啥需要引入lambda? 在c98中,我们使用sort对一段自定义类型进行排序的时候,每次都需要传一个仿函数,即手写一个完整的类。甚至有时需要同时实现排升序和降序,就需要各自手写一个类&…...
动态主题模型DTM(Dynamic topic model)简介及python代码
文章目录 DTM模型简介DTM实现1:gensim.models.ldaseqmodel包DTM实现2:gensim.models.wrappers.dtmmodel.DtmModel包DTM模型简介 DTM模型(Dynamic Topic Model)是一种用于文本数据分析的概率模型,主要用于发现文本数据背后的主题结构和主题的演化过程。DTM模型是LDA模型的…...

GDPU MySQL数据库 天码行空1 数据库的创建和基本操作
💖 必看 MySQL 5.7默认的 innodb 存储引擎Windows10 和 Centos7 一、实验目的 1.熟知机房用机安全规则。 2.通过上机操作,加深对数据库系统理论知识的理解;通过使用具体的DBMS,了解一种实际的数据库管理系…...

《告别卡顿,一键卸载!IObit Uninstaller 13 免费版让电脑重获新生》
随着电脑使用时间的增长,各种软件的安装和卸载,难免会让电脑变得臃肿不堪,运行速度大不如前。你是否也有过这样的烦恼?别担心,IObit Uninstaller 13 免费版来帮你解决这个问题! IObit Uninstaller 13 是一…...
Python|基于Kimi大模型,实现上传文档并进行对话(5)
前言 本文是该专栏的第5篇,后面会持续分享AI大模型干货知识,记得关注。 我们在利用大模型进行文本处理的时候,可能会遇到这样的情况。 笔者在这里举个例子,比如说我们的目标文本是一堆docx文档,或者pdf文档,doc文档等等。这时需要大模型对这样的文档文本内容进行语义处…...

C++设计模式——Prototype Pattern原型模式
一,原型模式的定义 原型模式是一种创建型设计模式,它允许通过克隆已有对象来创建新对象,从而无需调用显式的实例化过程。 原型模式的设计,使得它可以创建一个与原型对象相同或类似的新对象,同时又可以减少对象实例化…...

Vue3 : ref 与 reactive
目录 一.ref 二.reactive 三.ref与reactive的区别 四.总结 一.ref 在 Vue 3 中,ref 是一个用于创建可读写且支持数据跟踪的响应式引用对象。它主要用于在组件内部创建响应式数据,这些数据可以是基本类型(如 number、string、boolean&…...

html实现好看的多种风格手风琴折叠菜单效果合集(附源码)
文章目录 1.设计来源1.1 风格1 -图文结合手风琴1.2 风格2 - 纯图片手风琴1.3 风格3 - 导航手风琴1.4 风格4 - 双图手风琴1.5 风格5 - 综合手风琴1.6 风格6 - 简描手风琴1.7 风格7 - 功能手风琴1.8 风格8 - 全屏手风琴1.9 风格9 - 全屏灵活手风琴 2.效果和源码2.1 动态效果2.2 源…...

Nacos分布式配置中心
分布式配置的优势: 不需要重新发布我们的应用 新建父工程:【将它作为跟 所以要把父工程里面的src删掉】 新建子模块: 新建bootstrap.properties: 在使用Nacos作为配置中心时,推荐在bootstrap.properties中配置Nacos相…...

C# WinForm 中 DataGridView 实现单元格cell 能进编辑状态但是不能修改单元格的效果
在Windows Forms(WinForms)开发中,DataGridView 控件是一个功能强大的组件, 用于显示和管理表格数据。无论是展示大量数据,还是实现交互式的数据操作, DataGridView 都能提供多样的功能支持,比如…...

GANs-生成对抗网络
参考: https://mp.weixin.qq.com/s?__bizMjM5ODIwNjEzNQ&mid2649887403&idx3&snf61fc0e238ffbc56a7f1249b93c20690&chksmbfa0f632460e035f00be6cc6eb09637d91614e4c31da9ff47077ca468caad1ee27d08c04ca32&scene27 https://cloud.tencent.com…...

e冒泡排序---复杂度O(X^2)
排序原理: 1.比较相邻的元素。如果前一个元素比后一个元素大,就交换这两个元素的位置。 2.对每一对相邻元素做同样的工作,从开始第一对元素到结尾的最后一对元素。最终最后位置的元素就是最大值, public class 冒泡排序 {public static void main(String[] args) {I…...

C语言--结构体(学习笔记)
内容借鉴于b站杜远超官方频道(C语言结构体详解【干货】) 首先C语言中定义变量格式为“数据类型 变量名”,如int a; float b;等等。 那么结构体则是将多个变量(数据类型 变量名)结合在一起的一种新的数据类型&…...
Vue项目中实现用户登录后跳回原地址
本地存储 在 Vue 3 中,你可以使用 Vue Router 和 sessionStorage 或 localStorage 来实现用户登录后跳回原来的页面。以下是一种常见的实现方式: 在用户登录之前,记录当前页面的路由路径: 在需要登录的页面组件中,在…...

【Google Chrome Windows 64 version及 WebDriver 版本】
最近升级到最新版本Chrome后发现页面居然显示错乱实在无语, 打算退回原来的版本, 又发现官方只提供最新的版本下载, 为了解决这个问题所有收集了Chrome历史版本的下载地址分享给大家. Google Chrome Windows version 64 位 VersionSize下载地址Date104.0.5112.10282.76 MBhtt…...
[ffmpeg] 音视频编码
本文主要梳理 ffmpeg 中音视频编码的常用函数 API调用 常用 API const AVCodec *avcodec_find_encoder(enum AVCodecID id); AVCodecContext *avcodec_alloc_context3(const AVCodec *codec); void avcodec_free_context(AVCodecContext **avctx); int avcodec_open2(AVCode…...

springboot+redis+缓存
整合 添加依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId> </dependency> 连接redis,配置yml文件 主机 端口号 数据库是哪一个 密码 配置类 p…...

关于http的206状态码和416状态码的意义、断点续传以及CORS使用Access-Control-Allow-Origin来允许跨域请求
一、关于http的206状态码和416状态码的意义及断点续传 HTTP 2xx范围内的状态码表明客户端发送的请求已经被服务器接受并且被成功处理了,HTTP/1.1 206状态码表示客户端通过发送范围请求头Range抓取到了资源的部分数据,一般用来解决大文件下载问题,一般CDN…...

SOMEIP_ETS_114: SD_Entries_Length_wrong_combined
测试目的: 验证DUT能够拒绝一个包含两个正确条目但条目数组长度不正确的SubscribeEventgroup消息,并以SubscribeEventgroupNAck作为响应。 描述 本测试用例旨在确保DUT遵循SOME/IP协议,当接收到一个条目数组长度与实际条目数量不匹配的Sub…...

linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...

微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...

USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...
JS手写代码篇----使用Promise封装AJAX请求
15、使用Promise封装AJAX请求 promise就有reject和resolve了,就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...
0x-3-Oracle 23 ai-sqlcl 25.1 集成安装-配置和优化
是不是受够了安装了oracle database之后sqlplus的简陋,无法删除无法上下翻页的苦恼。 可以安装readline和rlwrap插件的话,配置.bahs_profile后也能解决上下翻页这些,但是很多生产环境无法安装rpm包。 oracle提供了sqlcl免费许可,…...

针对药品仓库的效期管理问题,如何利用WMS系统“破局”
案例: 某医药分销企业,主要经营各类药品的批发与零售。由于药品的特殊性,效期管理至关重要,但该企业一直面临效期问题的困扰。在未使用WMS系统之前,其药品入库、存储、出库等环节的效期管理主要依赖人工记录与检查。库…...
python读取SQLite表个并生成pdf文件
代码用于创建含50列的SQLite数据库并插入500行随机浮点数据,随后读取数据,通过ReportLab生成横向PDF表格,包含格式化(两位小数)及表头、网格线等美观样式。 # 导入所需库 import sqlite3 # 用于操作…...