当前位置: 首页 > news >正文

论文解读《COMMA: Co-articulated Multi-Modal Learning》

系列文章目录


文章目录

  • 系列文章目录
    • 论文细节理解
      • 1. 研究背景
      • 2. 论文贡献
      • 3. 方法框架
      • 4. 研究思路
      • 5. 实验
      • 6. 限制
      • 结论


论文细节理解

  1. 这段话中,the vision branch is uni-directionally influenced by the text branch only 什么意思?具体举例一下
    以下是一个具体的例子来说明“视觉分支仅受到文本分支的单向影响”的意思:
    假设我们有一个视觉-语言模型(VLM),用于图像描述生成。模型的结构包括两个分支:视觉分支和文本分支。
    文本分支:输入一段描述,比如“这是一只在草地上奔跑的狗”。
    视觉分支:模型使用文本分支的信息来分析图像,提取出与文本描述相关的视觉特征,比如识别出图中的狗和草地。
    在这种情况下,视觉分支的特征提取完全依赖于文本分支提供的信息。也就是说,视觉分支不会根据自己的特征来影响文本分支的理解或生成。这种单向影响可能导致模型在处理复杂的视觉-语言关系时表现不佳,因为它没有充分利用视觉信息来丰富文本理解。
    如果模型能够实现双向影响,视觉分支也能反过来影响文本分支,比如通过视觉特征来生成更准确的描述,可能会提高整体性能和对未见类别的泛化能力。

1. 研究背景

近年来,随着网络数据的大量增加,尤其是包含大规模图像-文本配对的数据集,促进了视觉语言模型(Vision-Language Models, VLMs)的发展。例如,CLIP(Radford et al., 2021)等模型,因自然语言的监督学习,展现出了卓越的开放领域概念推理能力,能够很好地适应各种下游任务。然而,这类模型也存在以下问题:

  • 依赖手工构建的文本提示(prompts)来进行推理。生成的提示需要根据不同的下游任务进行调整,而手工设计的提示既耗时又难以准确反映新任务的特性。
  • 在对模型进行微调时,容易遗忘在预训练阶段学到的通用知识,并且在泛化到新类新域时性能下降。

在此背景下,研究者们提出了自动化提示生成的方法来代替手工提示设计。这类方法在微调过程中更新提示,但保留模型的预训练参数,降低了计算资源的需求。然而,这类方法也有局限性,例如视觉和语言分支提示分离,未能充分关联这两种模式的表示,导致在新类泛化和性能保留上表现不佳。

2. 论文贡献

这篇论文提出了Co-Articulated Multi-Modal Learning (COMMA),解决了现有视觉语言模型提示生成方法的两个主要问题:

  1. 增强视觉和语言分支的提示关联性:与之前的方法不同,COMMA在每一层生成提示时,考虑了视觉和语言分支的前一层提示,通过共同生成下一层的提示,确保两者的提示在表示上更好地对齐。
  2. 减轻知识遗忘问题:为了避免微调过程中遗忘预训练阶段学到的通用知识,COMMA通过最小化生成提示和CLIP模型手工提示嵌入之间的差异,保留关键的知识。

通过这两个创新,COMMA在多种任务中展示了卓越的性能,尤其是在从基础类到新类的泛化任务跨数据集迁移域泛化任务上,表现出显著的提升。

3. 方法框架

COMMA的核心方法分为以下几个部分:

  • 提示生成:不同于传统的单独生成视觉或语言分支的提示,COMMA通过考虑两个分支的前一层提示来共同生成下一层提示。这使得视觉和语言分支的提示嵌入更加紧密相关,有助于更好地对齐两种模式的表示。
  • 保持知识的一致性:为了防止微调过程中遗忘预训练时学到的通用知识,COMMA引入了一个知识保留机制,最小化微调过程中生成的提示与预训练时手工提示嵌入之间的差距。

这种方法在三个方面带来了改进:

  1. 新类泛化性能:通过更好地对齐视觉和语言提示,提升了模型在未见类别上的表现。
  2. 跨数据集迁移:通过保持知识一致性,减少了模型在新数据集上的性能下降。
  3. 域泛化能力:在面对不同数据分布的情况下,模型能够保持稳健的性能。

4. 研究思路

论文的研究思路主要围绕以下几个步骤展开:

  1. 问题定义:当前视觉语言模型在提示生成和知识保留方面存在不足,难以有效泛化到新类、新数据集或新域。
  2. 方法提出:为了解决这些问题,提出COMMA框架,核心是通过联合生成提示和减少知识遗忘来增强模型的表示能力。
  3. 实验设计:通过多个数据集和任务对COMMA进行测试,以验证其性能提升。

5. 实验

论文通过三个代表性的实验场景对COMMA进行了评估:

  1. 基础类到新类的泛化:在11个多样化的图像识别数据集上进行实验,COMMA在其中的10个数据集上超过了当前最先进的方法,展示了在新类泛化任务中的优势。
  2. 跨数据集迁移:通过不同数据集之间的转移学习实验,验证了COMMA在不同数据集上的表现,并展示了其良好的迁移能力。
  3. 域泛化任务:通过测试不同领域数据集,证明了COMMA在不同域的泛化能力。

这些实验结果表明,COMMA在训练效率和推理效率上也优于之前的方法,适用于计算资源受限的下游任务。

6. 限制

尽管COMMA在多种任务上表现出色,但它也存在一些限制:

  • 模型复杂性:与传统方法相比,联合生成提示的设计增加了模型的复杂性,这可能会影响其在超大规模数据上的训练和应用。
  • 预训练依赖性:该方法依赖于预训练模型生成的提示嵌入,可能在预训练数据和任务与下游任务差异较大时表现不如预期。

结论

COMMA通过联合生成视觉和语言提示以及减少知识遗忘,在多个代表性任务中表现出卓越的性能。它的设计增强了提示生成的有效性,提升了新类、新域和新数据集上的泛化能力,成为视觉语言模型领域的一项重要进展。

相关文章:

论文解读《COMMA: Co-articulated Multi-Modal Learning》

系列文章目录 文章目录 系列文章目录论文细节理解1. 研究背景2. 论文贡献3. 方法框架4. 研究思路5. 实验6. 限制结论 论文细节理解 这段话中,the vision branch is uni-directionally influenced by the text branch only 什么意思?具体举例一下 以下是…...

10款电脑加密软件超好用推荐|2024年常用电脑加密软件排行榜

随着数据隐私和信息安全意识的增强,电脑加密软件已成为日常工作和个人生活中不可或缺的工具之一。无论是保护公司机密文件,还是保障个人数据的安全,合适的加密软件都能提供强有力的保护。本文将推荐2024年超好用的10款电脑加密软件&#xff0…...

用户态缓存:环形缓冲区(Ring Buffer)

目录 环形缓冲区(Ring Buffer)简介 为什么选择环形缓冲区? 代码解析 1. 头文件与类型定义 1.1 头文件保护符 1.2 包含必要的标准库 1.3 类型定义 2. 环形缓冲区结构体 2.1 结构体成员解释 3. 辅助宏与内联函数 3.1 min 宏 3.2 is…...

Harmony应用 ArkTs AES 加密方法之GCM对称加密

加解密介绍 在数据存储或传输场景中,可以使用加解密操作用于保证数据的机密性,防止敏感数据泄露。 使用加解密操作中,典型的场景有: 使用对称密钥的加解密操作。 使用非对称密钥的加解密操作。 使用RSA(PKCS1_OAEP…...

热成像在战场上的具体作用!!!

1. 探测和跟踪敌人 原理:人体和许多类型的军事设备都会发热,热成像技术通过探测这些红外辐射,能够在远距离探测和跟踪敌人的位置。 应用场景:这一功能在夜间或有覆盖物(如草丛、树林)的情况下尤为有效&am…...

2024年09月20日《每日一练》

1、 根据我国“十三五”规划纲要,()不属于新一代信息技术产业创新发展的重点。 A 人工智能 B 移动智能终端 C 先进传感器 D 4G D P13 此题考察的是新一代信息技术,必须掌握,高频考点 国在“十三五“规划纲要中&#x…...

使用 SSCB 保护现代高压直流系统的优势

在各种应用中,系统效率和功率密度不断提高,这导致了更高的直流系统电压。然而,传统的电路保护解决方案不足以在保持高可靠性和安全性的同时有效保护这些高压配电系统。 固态断路器 (SSCB) 和电熔断器具有众多优点&…...

Linux基础命令——文件系统的日常管理

目录 一.如何查看当前工作目录?(你现在所处的位置路径) 二.命令touch的用途是什么?还有别的方法新建文件吗? (1)创建空文件 (2)如果已经存在这个文件,就会更新创建时间。 (3…...

uniapp使用高德地图设置marker标记点,后续根据接口数据改变某个marker标记点,动态更新

最近写的一个功能属实把我难倒了,刚开始我请求一次数据获取所有标记点,然后设置到地图上,然后后面根据socket传来的数据对这些标记点实时更新,改变标记点的图片或者文字, 1:第一个想法是直接全量替换,事实证明这样不行,会很卡顿,有明显闪烁感,如果标记点比较少,就十几个可以用…...

坦白了,因为这个我直接爱上了 FreeBuds 6i

上个月,华为发布的 FreeBuds 6i 联名了泡泡玛特真的超级惊艳,不少宝子被这款耳机的颜值所吸引,而它的实力更是不容小觑的。FreeBuds 6i 是一款性能强大的降噪耳机,它一直在强调平均降噪深度,但是应该很多人对这个概念很…...

006.MySQL_查询数据

课 程 推 荐我 的 个 人 主 页:👉👉 失心疯的个人主页 👈👈入 门 教 程 推 荐 :👉👉 Python零基础入门教程合集 👈👈虚 拟 环 境 搭 建 :&#x1…...

【C#生态园】从图像到视觉:Emgu.CV、AForge.NET、OpenCvSharp 全面解析

C#图像处理库大比拼:功能对比、安装配置、API概览 前言 图像处理和计算机视觉在现代软件开发中扮演着重要角色,而C#作为一种流行的编程语言,拥有许多优秀的图像处理库。本文将介绍几个用于C#的图像处理和计算机视觉库,包括Image…...

1、无线通信的发展概况

无线通信是指双方至少一方使用无线方式进行信息的交换与传输,包括移动体(行人、车辆、船舶以及飞机)和移动体之间的通信,也包括移动体与固定点(固定点的移动电台或有线通信)之间的通信。 随着无线通信的范围…...

虚拟机安装xubuntu

新建一个新的虚拟机,选择自定义安装 默认下一步 选择稍后安装操作系统 选择所要创建的系统及版本 填写虚拟机的名称及创建的虚拟机保存的位置 选择处理器和内核的数量 处理器数量指的是:虚拟的CPU数量。 每个处理器的内核数量指的是:虚拟CPU…...

携手鲲鹏,长亮科技加速银行核心系统升级

新经济周期下,银行净息差持续收窄、盈利压力加大、市场竞争日趋加剧。同时,国家相关政策不断出台,对金融科技的自主创新与安全可控提出了更高要求。 在这样的大背景下,银行业的数字化转型已经步入深水区。其中,核心系统…...

新鲜的Win11/10镜像,全系列下载!

下载:新鲜的Win11/10镜像,全系列下载! | 瑆箫博客 Windows每个月都来一次例行更新,大吉大利今晚装机!2024年9月份ISO镜像,来咯~我们不生产系统,我们只是大自然微软的搬运工本文提供Windows11、…...

iPhone 16系列:摄影艺术的全新演绎,探索影像新境界

在科技的浪潮中,智能手机摄影功能的进化从未停歇。 苹果公司即将推出的iPhone 16系列,以其卓越的相机升级和创新特性,再次站在了手机摄影的前沿。 从硬件到软件,从拍照体验到图像处理,iPhone 16系列都展现了其在移动…...

移动应用开发中的技术选择:优缺点全面解析

在移动应用开发领域,技术的快速演变和多样化使得开发者面临着多种选择。随着市场需求的不断变化,各种框架和工具应运而生。本文将分析当前主流应用开发技术的优势与劣势,帮助开发者选择最适合的技术栈。 一、原生开发 优势 性能卓越&#…...

宿舍管理系统的设计与实现 (含源码+sql+视频导入教程)

👉文末查看项目功能视频演示获取源码sql脚本视频导入教程视频 1 、功能描述 宿舍管理系统拥有三个角色,分别为系统管理员、宿舍管理员以及学生。其功能如下: 管理员:宿舍管理员管理、学生管理、宿舍楼管理、缺勤记录管理、个人密…...

原生+jquery写自动消失的提示框

<!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8"> <meta name"viewport" content"widthdevice-width, initial-scale1.0"> <title>自动消失消息提示</title> <style>/…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​&#xff1a; 下载安装DevEco Studio 4.0&#xff08;支持HarmonyOS 5&#xff09;配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​&#xff1a; ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...