交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
一、介绍
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
在本项目中,开发了一个基于人工智能的交通标志识别系统,旨在利用深度学习技术对常见的交通标志进行高效、准确的识别。该系统以Python作为主要编程语言,核心算法依托于TensorFlow框架下的卷积神经网络(CNN)模型进行实现。通过构建适合图像分类任务的CNN架构,系统能够有效地从输入的交通标志图片中提取特征,并进行分类预测。
为了训练模型,首先收集了58种常见交通标志的图像数据集。数据集涵盖了日常交通中经常遇到的各种标志,包括限速、停车、禁止通行等类别。在模型训练过程中,系统通过多次迭代优化网络参数,确保模型能够逐步提高识别的准确性。经过大量的训练和验证,最终获得了一个识别精度较高的模型,并将其保存为H5格式文件,便于后续的加载和使用。
在实现模型训练和保存后,系统还采用Django框架开发了一个Web前端界面。用户可以通过该网页端上传一张交通标志图片,系统将基于训练好的模型自动识别该标志,并返回标志的名称和类别。这不仅提升了系统的实用性,还为用户提供了便捷的操作体验。整体而言,本项目展示了深度学习在图像分类中的广泛应用,并为交通标志自动识别提供了一个有效的解决方案。
二、系统效果图片展示


三、演示视频 and 完整代码 and 安装
地址:https://www.yuque.com/ziwu/yygu3z/negbi656d7r4b0vi
四、卷积神经网络算法模型介绍
卷积神经网络(Convolutional Neural Network, CNN)是一种专门用于处理图像数据的深度学习模型,具有自动提取图像特征并进行分类的能力。CNN 的核心特点在于其独特的网络结构设计,主要包括卷积层、池化层和全连接层。
- 局部连接与权重共享:卷积层通过卷积核(或称过滤器)在输入图像上进行滑动,逐一提取局部特征,并通过权重共享大大减少了参数量,提升了模型的训练效率。
- 层级特征提取:CNN能够逐层提取图像的不同层次特征。低层提取边缘、纹理等简单特征,高层则提取更抽象的形状、对象等复杂特征。
- 池化操作:通过池化层(如最大池化)进行下采样,可以减小特征图的尺寸,降低模型计算量,并增强模型对图像微小变化的鲁棒性。
- 自动特征学习:CNN通过反向传播和梯度下降自动学习图像中的重要特征,无需人工设计特征提取方法,适合处理大规模复杂数据集。
以下是一段简单的CNN代码示例,使用TensorFlow和Keras实现:
from tensorflow.keras import layers, models# 创建卷积神经网络模型
model = models.Sequential([layers.Conv2D(32, (3, 3), activation='relu', input_shape=(64, 64, 3)),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation='relu'),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation='relu'),layers.Flatten(),layers.Dense(64, activation='relu'),layers.Dense(10, activation='softmax') # 10类分类
])# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
这段代码定义了一个简单的三层卷积网络,适用于处理64x64像素的彩色图像。
相关文章:
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
一、介绍 交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高…...
【QT】定时器使用
文章目录 关于 Qt 定时器使用的注意细节总结实例-检查工具使用周期时间是否合理UI设计头文件 remind.h源文件 remind.cpp实现效果 关于 Qt 定时器使用的注意细节总结 一、创建与初始化 使用 QTimer 类来创建定时器。可以在构造函数中指定父对象,确保定时器在正确的…...
虚拟机:3、(待更)WSL2安装Ubuntu系统+实现GPU直通
WSL2实现linux子系统GPU直通 安装WSL2和Ubuntu 见https://blog.csdn.net/bule_shake/article/details/135992375 问题:wsl --update进度卡住 如果命令wsl --update进度一直为0,可以先运行wsl --shutdown,然后再次升级。 微软商店打不开、…...
CSP-J2024年全真模拟题 阅读程序篇2
因为明天考试,这回给大家准备了超详细的解析~ 22.程序中 n 和 m 只有输入正整数,程序的输出值才可能是 YES A.对B.错 23.程序中用到了递归函数 bool fun(int n) A.对B.错 24.若输入 n 和 m 都是素数,程序的输出值…...
几种手段mfc140u.dll丢失的解决方法,了解mfc140u.dll
在使用Windows操作系统时,许多用户可能会遇到“找不到mfc140u.dll”或“mfc140u.dll未找到”的错误提示。这个错误通常是由于该文件丢失或损坏所致。本文将详细介绍mfc140u.dll文件的作用、丢失的原因及其解决方法,帮助您快速恢复系统的正常运行。 一、m…...
Scrapy爬虫框架 Spider Middleware 爬虫页中间件
在当今的互联网时代,数据的收集和分析变得越来越重要,爬虫技术作为数据获取的重要手段,受到广泛关注。Scrapy 是一个广受欢迎的 Python 爬虫框架,它以其高效、灵活和易于扩展的特点,成为了开发者的首选工具之一。Scrapy 框架中的中间件(Spider Middlewares)是扩展和定制…...
localectl 命令:系统语言、键盘布局和区域设置
一、命令简介 localectl 是 Linux 系统中用于查询和配置系统语言、键盘布局和区域设置的命令。它属于 systemd 系统和服务管理器的一部分,允许用户通过简单的命令行接口更改与本地化相关的配置。 相关命令: 如果是时间相关的设置࿰…...
《微信小程序实战(3) · 推广海报制作》
📢 大家好,我是 【战神刘玉栋】,有10多年的研发经验,致力于前后端技术栈的知识沉淀和传播。 💗 🌻 CSDN入驻不久,希望大家多多支持,后续会继续提升文章质量,绝不滥竽充数…...
SS-MUSIC
SS-MUSIC 相干信号源带来的缺秩问题什么是中心对称阵列什么是前后向平均技术什么是 SS-MUSIC 算法SS-MUSIC 能解相干的原因SS-MUSIC 改进算法总结参考文献 本文讨论针对一维均匀线阵(ULA,Uniform Linear Array)的空间平滑 MUSIC(S…...
Spring Cloud Gateway组件
Spring Cloud Gateway是Spring Cloud生态系统中的一个关键组件,它基于Spring Framework 5、Spring Boot 2和Project Reactor等技 术构建,为微服务架构提供了强大且灵活的网关服务。以下是对Spring Cloud Gateway的详细介绍:一、概述 Spring …...
激发AI创造力:掌握Prompt提示词的高效提问方法
AI内容创作的核心:提示词Prompt 在AI内容创作中,提示词(Prompt)是关键因素,能有效引导AI生成高质量、符合预期的内容。通过合理组织提示词,创作者可以大幅提升AI输出的准确性和专业度。掌握提示词的编写技…...
江科大笔记—STM32课程简介
课程简介...
使用 nvm 管理 node 版本:如何在 macOS 和 Windows 上安装使用nvm
🔥 个人主页:空白诗 文章目录 一、引言二、nvm的安装与基本使用2.1 macOS安装nvm2.1.1 使用 curl 安装2.1.2 使用 Homebrew 安装 2.2 Windows安装nvm2.2.1 下载 nvm-windows2.2.2 安装 nvm-windows 2.3 安装node2.4 切换node版本 三、常见问题及解决方案…...
【项目开发 | Python】基于“羊了个羊“风格的消除类小游戏
原创文章,不得转载。 目标:使用 Python 开发"羊了个羊"风格的消除类小游戏,合理运用 AIGC 工具提高开发效率;使用文生图工具实现图片设计等工作。 文章目录 项目背景项目介绍+项目展示游戏逻辑概述主界面游戏界面获胜界面失败界面附加功能项目细节项目测试测试样…...
云服务器使用
最近搭建一个内网穿透工具,推荐一个云服务器: 三丰台:https://www.sanfengyun.com/ 作为学生党这个服务器是免费的可以体验使用!可以使用免费虚拟主机和云服务器,写一个申请的基本步骤方便大家构建 申请步骤&#x…...
sqli-lab靶场学习(四)——Less11-14(post方法)
前言 第1-10关都是get方法,本关开始进入post方法。其实post也好get也好,本质都差不多,使用的技巧也基本相同。 Less11 第11关打开是一个输入用户名密码的界面 显然登陆对话框会使用post方式提交,这里我们尝试在Username一栏通过…...
GBDT算法原理及其公式推导过程
GBDT(Gradient Boosting Decision Tree,梯度提升决策树)是一种集成学习方法,主要用于回归和分类任务。它的基本思想是通过迭代地构建一系列弱学习器(通常是决策树),并将这些弱学习器组合成一个强…...
网络:UDP协议
个人主页 : 个人主页 个人专栏 : 《数据结构》 《C语言》《C》《Linux》 文章目录 前言UDP协议报头和有效载荷分离的问题有效载荷向上交付的问题,也就是交给哪个进程?怎么确定把报文收全了?UDP报头是如何封装的呢&…...
linux与unix
不同点 1开源性 linux是开源的,unix是闭源的 2跨平台性 linux具有很好的跨平台性,可以运行在多种硬件平台 unix大多需要与指定硬件配套使用 3相关操作 linux既可以进行命令行操作,也可以进行图形化的操作 unix只是命令行下的操作 4对…...
计算机网络29——Linux基本命令vim,gcc编译命令
1、创建新用户 2、给用户设置密码 3、切换到新用户 切换到root用户 4、删除用户 5、查看ip 6、ping 查看物理上两台主机是否联通 7、netstatus 8、nslookup 查看网址的地址 9、负载均衡与容灾备份 负载均衡:指将负载(工作任务)进行平衡、分…...
XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
【Linux】C语言执行shell指令
在C语言中执行Shell指令 在C语言中,有几种方法可以执行Shell指令: 1. 使用system()函数 这是最简单的方法,包含在stdlib.h头文件中: #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...
云原生安全实战:API网关Kong的鉴权与限流详解
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关(API Gateway) API网关是微服务架构中的核心组件,负责统一管理所有API的流量入口。它像一座…...
