当前位置: 首页 > news >正文

交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面

一、介绍

交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。


在本项目中,开发了一个基于人工智能的交通标志识别系统,旨在利用深度学习技术对常见的交通标志进行高效、准确的识别。该系统以Python作为主要编程语言,核心算法依托于TensorFlow框架下的卷积神经网络(CNN)模型进行实现。通过构建适合图像分类任务的CNN架构,系统能够有效地从输入的交通标志图片中提取特征,并进行分类预测。

为了训练模型,首先收集了58种常见交通标志的图像数据集。数据集涵盖了日常交通中经常遇到的各种标志,包括限速、停车、禁止通行等类别。在模型训练过程中,系统通过多次迭代优化网络参数,确保模型能够逐步提高识别的准确性。经过大量的训练和验证,最终获得了一个识别精度较高的模型,并将其保存为H5格式文件,便于后续的加载和使用。

在实现模型训练和保存后,系统还采用Django框架开发了一个Web前端界面。用户可以通过该网页端上传一张交通标志图片,系统将基于训练好的模型自动识别该标志,并返回标志的名称和类别。这不仅提升了系统的实用性,还为用户提供了便捷的操作体验。整体而言,本项目展示了深度学习在图像分类中的广泛应用,并为交通标志自动识别提供了一个有效的解决方案。

二、系统效果图片展示

img_05_12_21_34_14

img_05_12_21_35_01

三、演示视频 and 完整代码 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/negbi656d7r4b0vi

四、卷积神经网络算法模型介绍

卷积神经网络(Convolutional Neural Network, CNN)是一种专门用于处理图像数据的深度学习模型,具有自动提取图像特征并进行分类的能力。CNN 的核心特点在于其独特的网络结构设计,主要包括卷积层、池化层和全连接层。

  1. 局部连接与权重共享:卷积层通过卷积核(或称过滤器)在输入图像上进行滑动,逐一提取局部特征,并通过权重共享大大减少了参数量,提升了模型的训练效率。
  2. 层级特征提取:CNN能够逐层提取图像的不同层次特征。低层提取边缘、纹理等简单特征,高层则提取更抽象的形状、对象等复杂特征。
  3. 池化操作:通过池化层(如最大池化)进行下采样,可以减小特征图的尺寸,降低模型计算量,并增强模型对图像微小变化的鲁棒性。
  4. 自动特征学习:CNN通过反向传播和梯度下降自动学习图像中的重要特征,无需人工设计特征提取方法,适合处理大规模复杂数据集。

以下是一段简单的CNN代码示例,使用TensorFlow和Keras实现:

from tensorflow.keras import layers, models# 创建卷积神经网络模型
model = models.Sequential([layers.Conv2D(32, (3, 3), activation='relu', input_shape=(64, 64, 3)),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation='relu'),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation='relu'),layers.Flatten(),layers.Dense(64, activation='relu'),layers.Dense(10, activation='softmax')  # 10类分类
])# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

这段代码定义了一个简单的三层卷积网络,适用于处理64x64像素的彩色图像。

相关文章:

交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面

一、介绍 交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高…...

【QT】定时器使用

文章目录 关于 Qt 定时器使用的注意细节总结实例-检查工具使用周期时间是否合理UI设计头文件 remind.h源文件 remind.cpp实现效果 关于 Qt 定时器使用的注意细节总结 一、创建与初始化 使用 QTimer 类来创建定时器。可以在构造函数中指定父对象,确保定时器在正确的…...

虚拟机:3、(待更)WSL2安装Ubuntu系统+实现GPU直通

WSL2实现linux子系统GPU直通 安装WSL2和Ubuntu 见https://blog.csdn.net/bule_shake/article/details/135992375 问题:wsl --update进度卡住 如果命令wsl --update进度一直为0,可以先运行wsl --shutdown,然后再次升级。 微软商店打不开、…...

CSP-J2024年全真模拟题 阅读程序篇2

因为明天考试,这回给大家准备了超详细的解析~ 22.程序中 n 和 m 只有输入正整数,程序的输出值才可能是 YES A.对B.错 23.程序中用到了递归函数 bool fun(int n) A.对B.错 24.若输入 n 和 m 都是素数,程序的输出值…...

几种手段mfc140u.dll丢失的解决方法,了解mfc140u.dll

在使用Windows操作系统时,许多用户可能会遇到“找不到mfc140u.dll”或“mfc140u.dll未找到”的错误提示。这个错误通常是由于该文件丢失或损坏所致。本文将详细介绍mfc140u.dll文件的作用、丢失的原因及其解决方法,帮助您快速恢复系统的正常运行。 一、m…...

Scrapy爬虫框架 Spider Middleware 爬虫页中间件

在当今的互联网时代,数据的收集和分析变得越来越重要,爬虫技术作为数据获取的重要手段,受到广泛关注。Scrapy 是一个广受欢迎的 Python 爬虫框架,它以其高效、灵活和易于扩展的特点,成为了开发者的首选工具之一。Scrapy 框架中的中间件(Spider Middlewares)是扩展和定制…...

localectl 命令:系统语言、键盘布局和区域设置

一、命令简介 ​localectl​ 是 Linux 系统中用于查询和配置系统语言、键盘布局和区域设置的命令。它属于 systemd​ 系统和服务管理器的一部分,允许用户通过简单的命令行接口更改与本地化相关的配置。 ‍ 相关命令: 如果是时间相关的设置&#xff0…...

《微信小程序实战(3) · 推广海报制作》

📢 大家好,我是 【战神刘玉栋】,有10多年的研发经验,致力于前后端技术栈的知识沉淀和传播。 💗 🌻 CSDN入驻不久,希望大家多多支持,后续会继续提升文章质量,绝不滥竽充数…...

SS-MUSIC

SS-MUSIC 相干信号源带来的缺秩问题什么是中心对称阵列什么是前后向平均技术什么是 SS-MUSIC 算法SS-MUSIC 能解相干的原因SS-MUSIC 改进算法总结参考文献 本文讨论针对一维均匀线阵(ULA,Uniform Linear Array)的空间平滑 MUSIC(S…...

Spring Cloud Gateway组件

Spring Cloud Gateway是Spring Cloud生态系统中的一个关键组件,它基于Spring Framework 5、Spring Boot 2和Project Reactor等技 术构建,为微服务架构提供了强大且灵活的网关服务。以下是对Spring Cloud Gateway的详细介绍:一、概述 Spring …...

激发AI创造力:掌握Prompt提示词的高效提问方法

AI内容创作的核心:提示词Prompt 在AI内容创作中,提示词(Prompt)是关键因素,能有效引导AI生成高质量、符合预期的内容。通过合理组织提示词,创作者可以大幅提升AI输出的准确性和专业度。掌握提示词的编写技…...

江科大笔记—STM32课程简介

课程简介...

使用 nvm 管理 node 版本:如何在 macOS 和 Windows 上安装使用nvm

🔥 个人主页:空白诗 文章目录 一、引言二、nvm的安装与基本使用2.1 macOS安装nvm2.1.1 使用 curl 安装2.1.2 使用 Homebrew 安装 2.2 Windows安装nvm2.2.1 下载 nvm-windows2.2.2 安装 nvm-windows 2.3 安装node2.4 切换node版本 三、常见问题及解决方案…...

【项目开发 | Python】基于“羊了个羊“风格的消除类小游戏

原创文章,不得转载。 目标:使用 Python 开发"羊了个羊"风格的消除类小游戏,合理运用 AIGC 工具提高开发效率;使用文生图工具实现图片设计等工作。 文章目录 项目背景项目介绍+项目展示游戏逻辑概述主界面游戏界面获胜界面失败界面附加功能项目细节项目测试测试样…...

云服务器使用

最近搭建一个内网穿透工具,推荐一个云服务器: 三丰台:https://www.sanfengyun.com/ 作为学生党这个服务器是免费的可以体验使用!可以使用免费虚拟主机和云服务器,写一个申请的基本步骤方便大家构建 申请步骤&#x…...

sqli-lab靶场学习(四)——Less11-14(post方法)

前言 第1-10关都是get方法,本关开始进入post方法。其实post也好get也好,本质都差不多,使用的技巧也基本相同。 Less11 第11关打开是一个输入用户名密码的界面 显然登陆对话框会使用post方式提交,这里我们尝试在Username一栏通过…...

GBDT算法原理及其公式推导过程

GBDT(Gradient Boosting Decision Tree,梯度提升决策树)是一种集成学习方法,主要用于回归和分类任务。它的基本思想是通过迭代地构建一系列弱学习器(通常是决策树),并将这些弱学习器组合成一个强…...

网络:UDP协议

个人主页 : 个人主页 个人专栏 : 《数据结构》 《C语言》《C》《Linux》 文章目录 前言UDP协议报头和有效载荷分离的问题有效载荷向上交付的问题,也就是交给哪个进程?怎么确定把报文收全了?UDP报头是如何封装的呢&…...

linux与unix

不同点 1开源性 linux是开源的,unix是闭源的 2跨平台性 linux具有很好的跨平台性,可以运行在多种硬件平台 unix大多需要与指定硬件配套使用 3相关操作 linux既可以进行命令行操作,也可以进行图形化的操作 unix只是命令行下的操作 4对…...

计算机网络29——Linux基本命令vim,gcc编译命令

1、创建新用户 2、给用户设置密码 3、切换到新用户 切换到root用户 4、删除用户 5、查看ip 6、ping 查看物理上两台主机是否联通 7、netstatus 8、nslookup 查看网址的地址 9、负载均衡与容灾备份 负载均衡:指将负载(工作任务)进行平衡、分…...

大话软工笔记—需求分析概述

需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称:Apache Flink REST API 任意文件读取漏洞CVE编号:CVE-2020-17519CVSS评分:7.5影响版本:Apache Flink 1.11.0、1.11.1、1.11.2修复版本:≥ 1.11.3 或 ≥ 1.12.0漏洞类型:路径遍历&#x…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

uniapp 字符包含的相关方法

在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...

PostgreSQL——环境搭建

一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在&#xff0…...