电力施工作业安全行为检测图像数据集
电力施工作业安全行为检测图像数据集,图片总共 2300左右,标注为voc(xml)格式,包含高空抛物,未佩戴安全带,高处作业无人监护等。

电力施工作业安全行为检测图像数据集
数据集描述
这是一个专门用于电力施工作业安全行为检测的图像数据集。数据集总共包含大约2300张图片,涵盖了多种常见的不安全行为,目的是帮助训练计算机视觉模型识别电力施工现场中的潜在安全隐患。
类别

数据集中标注的行为类别主要包括但不限于:
- 高空抛物
- 未佩戴安全带
- 高处作业无人监护
- 其他不安全行为(如不戴头盔、不穿防护服等)
标注格式
数据集中的标注采用了VOC(Visual Object Classes)格式,每个图像文件都有一个对应的XML文件,其中包含了图像中每个对象的位置信息(边界框坐标)和类别标签。
图像来源
图像数据来源于真实的电力施工现场,涵盖了不同的时间和天气条件,确保了数据集的多样性和实用性。
数据集结构
典型的VOC数据集结构如下:
1dataset/
2├── Annotations/
3│ ├── img_0001.xml
4│ ├── img_0002.xml
5│ └── ...
6├── ImageSets/
7│ ├── Main/
8│ │ ├── train.txt
9│ │ ├── val.txt
10│ │ └── test.txt
11├── JPEGImages/
12│ ├── img_0001.jpg
13│ ├── img_0002.jpg
14│ └── ...
15└── labels/
16 ├── train/
17 │ ├── img_0001.txt
18 │ ├── img_0002.txt
19 └── val/
20 ├── img_0001.txt
21 ├── img_0002.txt
应用场景
该数据集可以用于训练和评估机器学习模型,特别是在电力施工领域的安全监管方面。具体应用场景包括但不限于:
- 自动识别施工现场的安全隐患。
- 协助现场管理人员及时发现并纠正不安全行为。
- 提升施工人员的安全意识。
示例代码

下面是一个使用Python和相关库(如OpenCV、PyTorch等)来加载和展示数据集的简单示例代码:
1import os
2import cv2
3import xml.etree.ElementTree as ET
4from PIL import Image
5import numpy as np
6import torch
7from torchvision import transforms
8
9# 数据集路径
10dataset_path = 'path/to/dataset/'
11
12# 加载图像和标签
13def load_image_and_label(image_path, annotation_path):
14 # 读取图像
15 image = Image.open(image_path).convert('RGB')
16 # 解析XML文件
17 tree = ET.parse(annotation_path)
18 root = tree.getroot()
19 objects = []
20 for obj in root.findall('object'):
21 name = obj.find('name').text
22 bbox = obj.find('bndbox')
23 xmin = int(bbox.find('xmin').text)
24 ymin = int(bbox.find('ymin').text)
25 xmax = int(bbox.find('xmax').text)
26 ymax = int(bbox.find('ymax').text)
27 objects.append([xmin, ymin, xmax, ymax, name])
28 return image, objects
29
30# 展示图像
31def show_image_with_boxes(image, boxes):
32 img = np.array(image)
33 for box in boxes:
34 xmin, ymin, xmax, ymax, name = box
35 cv2.rectangle(img, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
36 cv2.putText(img, name, (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
37 cv2.imshow('Image with Boxes', img)
38 cv2.waitKey(0)
39 cv2.destroyAllWindows()
40
41# 主函数
42if __name__ == "__main__":
43 images_dir = os.path.join(dataset_path, 'JPEGImages')
44 annotations_dir = os.path.join(dataset_path, 'Annotations')
45
46 # 获取图像列表
47 image_files = [f for f in os.listdir(images_dir) if f.endswith('.jpg')]
48
49 # 随机选择一张图像
50 selected_image = np.random.choice(image_files)
51 image_path = os.path.join(images_dir, selected_image)
52 annotation_path = os.path.join(annotations_dir, selected_image.replace('.jpg', '.xml'))
53
54 # 加载图像和标签
55 image, boxes = load_image_and_label(image_path, annotation_path)
56
57 # 展示带有标注框的图像
58 show_image_with_boxes(image, boxes)
这段代码演示了如何加载图像和其对应的XML标注文件,并在图像上绘制边界框和类别标签。您可以根据实际需求进一步扩展和修改这段代码,以适应您的具体应用场景。
相关文章:
电力施工作业安全行为检测图像数据集
电力施工作业安全行为检测图像数据集,图片总共 2300左右,标注为voc(xml)格式,包含高空抛物,未佩戴安全带,高处作业无人监护等。 电力施工作业安全行为检测图像数据集 数据集描述 这是一个专门用于电力施工作业安全行…...
大数据实验2.Hadoop 集群搭建(单机/伪分布式/分布式)
实验二: Hadoop安装和使用 一、实验目的 实现hadoop的环境搭建和安装Hadoop的简单使用; 二、实验平台 操作系统:Linux(建议Ubuntu16.04或者18.04);Hadoop版本:3.1.3;JDK版本&…...
【CSS in Depth 2 精译_036】5.6 Grid 网格布局中与对齐相关的属性 + 5.7本章小结
当前内容所在位置(可进入专栏查看其他译好的章节内容) 第一章 层叠、优先级与继承(已完结) 1.1 层叠1.2 继承1.3 特殊值1.4 简写属性1.5 CSS 渐进式增强技术1.6 本章小结 第二章 相对单位(已完结) 2.1 相对…...
Qt圆角窗口
Qt圆角窗口 问题:自己重写了一个窗口,发现用qss设置圆角了,但是都不生效,不过子窗口圆角都生效了。 无边框移动窗口 bool eventFilter(QObject *watched, QEvent *evt) {static QPoint mousePoint;static bool mousePressed f…...
研究生第一次刷力扣day1
1.给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出和为目标值target 的那两个整数,并返回它们的数组下标 直接采用暴力求解,其他解答案看不懂 大致思想:先用len函数求出数组的长度n,然后一个个遍…...
flink自定义process,使用状态求历史总和(scala)
es idea maven 依赖 <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-connector-elasticsearch7_2.11</artifactId> <version>1.11.1</version> </dependency> import org.apache.flink.api.common.eve…...
股指期货理论价格计算公式是什么?
股指期货,作为金融衍生品的一种,其价格与现货市场的股指价格紧密相关,但又受到多种因素的影响。了解股指期货理论价格的计算公式,对于投资者进行套利交易、风险管理等具有重要意义。本文将详细解读股指期货理论价格的计算公式&…...
解决R包依赖版本不兼容问题
ERROR: dependency ‘Matrix’ is not available for package ‘irlba’ removing ‘/root/anaconda3/envs/myview/lib/R/library/irlba’ ERROR: dependency ‘Matrix’ is not available for package ‘N2R’ removing ‘/root/anaconda3/envs/myview/lib/R/library/N2R’ ER…...
HarmonyOS开发者基础认证考试试题
文章目录 一、判断题二、单选题三、多选题 因考试只有91分,所以下方答案有部分错误,如果有发现错误,欢迎提出 一、判断题 1. HarmonyOS提供了基础的应用加固安全能力,包括混淆、加密和代码签名能力 正确 2. 用户首选项是关系型数…...
如何使用 React、TypeScript、TailwindCSS 和 Vite 创建 Chrome 插件
创建一个 Chrome 插件是一个有趣的项目,特别是当结合使用强大的工具如 React、TypeScript、TailwindCSS 和 Vite 时 在这篇文章中,我们将逐步引导完成整个过程,了解如何在 2024 年构建自己的 Chrome 插件。无论是经验丰富的开发者还是刚刚起…...
机器学习——Stacking
Stacking: 方法:训练多个模型(可以是强模型),然后将这些模型的预测结果作为新的特征,输入到下一层新的模型(可以是多个)中进行训练,从而得到最终的预测结果。 代表:Stacking本身并没…...
在HTML中添加图片
在HTML中添加图片,你需要使用<img>标签。这个标签用于在网页上嵌入图像。<img>是一个空元素,它只包含属性,并且没有闭合标签。要在<img>标签中指定要显示的图像,你需要使用src(source的缩写…...
R语言机器学习算法实战系列(二) SVM算法(Support Vector Machine)
文章目录 介绍原理应用方向下载数据加载R包导入数据数据预处理数据描述数据切割标准化数据设置参数训练模型预测测试数据评估模型模型准确性混淆矩阵模型评估指标ROC CurvePRC Curve特征的重要性保存模型总结系统信息介绍 支持向量机(Support Vector Machine,简称SVM)是一种…...
gdb调试使用记录
使用 GDB(GNU Debugger)进行问题排查是非常有效的。且可以通过core文件进行排查bug,core文件是程序异常崩溃的时候(段错误,非法指令等),系统自动生成的core文件。用户可以通过core文件配合gdb调试命令,调试…...
ESXi安装【真机和虚拟机】(超详细)
项目简介: ESXi(Elastic Sky X Integrated)是VMware公司开发的一种裸机虚拟化管理程序,允许用户在单一物理服务器上运行多个虚拟机(VM)。它直接安装在服务器硬件上,而不是操作系统之上ÿ…...
基于SpringBoot+Vue的高校门禁管理系统
作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、SSM项目源码 精品专栏:Java精选实战项目源码、Python精…...
【Linux-基础IO】C语言文件接口回顾 系统文件概念及接口
目录 一、C语言文件接口回顾 C语言基础知识 C中文件操作示例 二、系统文件概念及接口 重定向基本理解的回顾 文件的基本概念 系统调用接口 open read write close lseek 什么是当前路径 一、C语言文件接口回顾 引言:我们并不理解文件!从语…...
系统架构笔记-3-信息系统基础知识
知识要点 结构化方法:结构是指系统内各个组成要素之间的相互联系、相互作用的框架。结构化方法也称为生命周期法,是一种传统的信息系统开发方法,由结构化分析、结构化设计、结构化程序设计三部分有机组合而成,精髓是自顶向下、逐…...
Linux下编程实现网络传送文件
本程序是在Linux下开发的,使用的是C语言,再结合Socket进行编程,分为客户端和服务器两个程序,即采用的是C/S架构,相应的源代码如下: 服务器端: #include <stdio.h> //#include <stdlib.h> #include <sys/socket.h> #include <netinet/in.h&g…...
【速成Redis】04 Redis 概念扫盲:事务、持久化、主从复制、哨兵模式
前言: 前三篇如下: 【速成Redis】01 Redis简介及windows上如何安装redis-CSDN博客 【速成Redis】02 Redis 五大基本数据类型常用命令-CSDN博客 【速成Redis】03 Redis 五大高级数据结构介绍及其常用命令 | 消息队列、地理空间、HyperLogLog、BitMap、…...
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...
Day131 | 灵神 | 回溯算法 | 子集型 子集
Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...
从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
