当前位置: 首页 > news >正文

【推广】图书|2024新书《大模型RAG实战:RAG原理、应用与系统构建》汪鹏、谷清水、卞龙鹏等,机械工业出版社

探索RAG系统新高度:《大模型RAG实战:RAG原理、应用与系统构建》

  随着大模型技术的爆发,尤其是ChatGPT之后,以ChatPDF为首的知识库问答产品迅速走红,引发了RAG(检索增强生成)系统的广泛关注与讨论。对于开发者和AI从业者来说,如何深入理解RAG系统,掌握最新的技术迭代,是一个不小的挑战。

  为了帮助大家从理论到实践全面掌握RAG技术,《大模型RAG实战:RAG原理、应用与系统构建》一书为你提供了深入浅出的指导。这本书由NLP和AI领域的资深技术专家汪鹏、谷清水、卞龙鹏联合撰写,结合了作者们多年在大厂的实战经验,系统性地介绍了RAG技术的三个发展阶段:初级、高级和超级RAG,带你探索如何将前沿技术成功落地。

为什么RAG技术如此重要?

  RAG技术是将检索与生成结合起来的一种新型架构,通过从大量文档中检索到与用户问题相关的内容,结合大模型生成精准的答案。这项技术尤其在知识库问答、企业信息检索等场景中表现出色,逐渐成为大模型应用中的关键工具。

  从最早的文档定长分块索引,到如今更为复杂的多模态、多任务处理系统,RAG技术已经经历了多个阶段的进化:

  1. 初级RAG阶段(S1):系统搭建初步形成,主要通过简单的文档索引和预定义模板生成答案。
    图片来自:https://www.promptingguide.ai/research/rag
  2. 高级RAG阶段(S2):系统在模型和策略层面进行大规模优化,包括更精细的文档解析、召回策略优化、内容生成改进等。
    图片来自langchain
  3. 超级RAG阶段(S3):多模态、Agent驱动、图谱RAG等技术相继出现,使得RAG技术在复杂场景中更具应用价值。
    图片来自:https://medium.com/@sulaiman.shamasna/rag-iv-agentic-rag-with-llamaindex-b3d80e09eae3
RAG技术的未来趋势

  书中不仅阐述了RAG技术当前的广泛应用场景,还预测了未来的发展方向。比如,Agentic RAG和GraphRAG的出现,展示了RAG系统在智能决策和图谱推理上的巨大潜力。此外,随着大模型上下文能力的增强,传统的RAG系统可能逐渐与长上下文模型竞争,甚至被取代。

  此外,书中还探讨了MemoryRAG等新兴技术,它将知识融入模型的外挂参数中,增强了系统的记忆能力。这些前沿话题,不仅为现有技术提供了优化方向,也为未来RAG系统的革新提供了无限可能。

为什么选择这本书?
  • 实战案例与代码实现:本书不仅讲解理论,还提供了大量实战案例和代码,帮助读者快速掌握RAG系统的设计与实现。
  • 全面覆盖RAG技术发展史:通过梳理RAG系统的三大阶段,帮助读者了解技术迭代的脉络,轻松掌握RAG的核心技术和前沿趋势。
  • 适用广泛的场景:无论你是初学者,还是有经验的开发者,本书都能为你提供详尽的指导,从基础原理到高级应用,帮助你构建和优化自己的RAG系统。
结语

  《大模型RAG实战:RAG原理、应用与系统构建》不仅是一本技术指南,更是带领你领略AI前沿应用的钥匙。如果你希望在RAG技术领域站稳脚跟,或是寻求在大模型应用中的新突破,这本书无疑将是你的最佳选择。

  通过本书,你将深入理解RAG的技术原理,掌握如何在大规模数据场景下优化RAG系统,助你成为下一代AI系统的引领者。

 该书购买链接:《大模型RAG实战:RAG原理、应用与系统构建 多年大厂经验AI专家撰写 全面讲解RAG技术 掌握》(汪鹏,谷清水,卞龙鹏)【摘要 书评 试读】- 京东图书

 文章内容参考:如何构建出更好的大模型RAG系统?

 本账号所有文章均为原创,欢迎转载,请注明文章出处:[https://shandianchengzi.blog.csdn.net/article/details/142420294](https://shandianchengzi.blog.csdn.net/article/details/142420294)。百度和各类采集站皆不可信,搜索请谨慎鉴别。技术类文章一般都有时效性,本人习惯不定期对自己的博文进行修正和更新,因此请访问出处以查看本文的最新版本。

相关文章:

【推广】图书|2024新书《大模型RAG实战:RAG原理、应用与系统构建》汪鹏、谷清水、卞龙鹏等,机械工业出版社

探索RAG系统新高度:《大模型RAG实战:RAG原理、应用与系统构建》 随着大模型技术的爆发,尤其是ChatGPT之后,以ChatPDF为首的知识库问答产品迅速走红,引发了RAG(检索增强生成)系统的广泛关注与讨论…...

在Unity UI中实现UILineRenderer组件绘制线条

背景介绍 在Unity的UI系统中,绘制线条并不像在3D世界中那样直观(使用Unity自带的LineRender组件在UI中连线并不方便,它在三维中更合适)。没有内置的工具来处理这种需求。如果你希望在UI元素之间绘制连接线(例如在UI上连接不同的图标或控件)&a…...

C语言中union的用法

在C语言中,union(联合体)是一种特殊的复合数据类型,它允许多个不同的数据成员共享同一块内存空间。与struct(结构体)不同的是,union中的所有成员共用同一个内存地址,因此同时只能存储…...

C++速通LeetCode中等第18题-删除链表的倒数第N个结点(最简单含注释)

绝妙!快慢指针法,快指针先走n步(复杂度O(n),O(1)): /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nullptr) {}* ListNode(int x) : val(x), next(n…...

鸿蒙 WebView 设置 Header

import { webview } from kit.ArkWebimport { WebHeader } from kit.ArkUI 一共两种方式: 1.把 loadurl的方法写在web组件的生命周期里面 Web({ src:"", controller: this.controller }) .onControllerAttached(()>{ this.controller.loadUrl("…...

电力施工作业安全行为检测图像数据集

电力施工作业安全行为检测图像数据集,图片总共 2300左右,标注为voc(xml)格式,包含高空抛物,未佩戴安全带,高处作业无人监护等。 电力施工作业安全行为检测图像数据集 数据集描述 这是一个专门用于电力施工作业安全行…...

大数据实验2.Hadoop 集群搭建(单机/伪分布式/分布式)

实验二: Hadoop安装和使用 一、实验目的 实现hadoop的环境搭建和安装Hadoop的简单使用; 二、实验平台 操作系统:Linux(建议Ubuntu16.04或者18.04);Hadoop版本:3.1.3;JDK版本&…...

【CSS in Depth 2 精译_036】5.6 Grid 网格布局中与对齐相关的属性 + 5.7本章小结

当前内容所在位置(可进入专栏查看其他译好的章节内容) 第一章 层叠、优先级与继承(已完结) 1.1 层叠1.2 继承1.3 特殊值1.4 简写属性1.5 CSS 渐进式增强技术1.6 本章小结 第二章 相对单位(已完结) 2.1 相对…...

Qt圆角窗口

Qt圆角窗口 问题:自己重写了一个窗口,发现用qss设置圆角了,但是都不生效,不过子窗口圆角都生效了。 无边框移动窗口 bool eventFilter(QObject *watched, QEvent *evt) {static QPoint mousePoint;static bool mousePressed f…...

研究生第一次刷力扣day1

1.给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出和为目标值target 的那两个整数,并返回它们的数组下标 直接采用暴力求解,其他解答案看不懂 大致思想:先用len函数求出数组的长度n,然后一个个遍…...

flink自定义process,使用状态求历史总和(scala)

es idea maven 依赖 <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-connector-elasticsearch7_2.11</artifactId> <version>1.11.1</version> </dependency> import org.apache.flink.api.common.eve…...

股指期货理论价格计算公式是什么?

股指期货&#xff0c;作为金融衍生品的一种&#xff0c;其价格与现货市场的股指价格紧密相关&#xff0c;但又受到多种因素的影响。了解股指期货理论价格的计算公式&#xff0c;对于投资者进行套利交易、风险管理等具有重要意义。本文将详细解读股指期货理论价格的计算公式&…...

解决R包依赖版本不兼容问题

ERROR: dependency ‘Matrix’ is not available for package ‘irlba’ removing ‘/root/anaconda3/envs/myview/lib/R/library/irlba’ ERROR: dependency ‘Matrix’ is not available for package ‘N2R’ removing ‘/root/anaconda3/envs/myview/lib/R/library/N2R’ ER…...

HarmonyOS开发者基础认证考试试题

文章目录 一、判断题二、单选题三、多选题 因考试只有91分&#xff0c;所以下方答案有部分错误&#xff0c;如果有发现错误&#xff0c;欢迎提出 一、判断题 1. HarmonyOS提供了基础的应用加固安全能力&#xff0c;包括混淆、加密和代码签名能力 正确 2. 用户首选项是关系型数…...

如何使用 React、TypeScript、TailwindCSS 和 Vite 创建 Chrome 插件

创建一个 Chrome 插件是一个有趣的项目&#xff0c;特别是当结合使用强大的工具如 React、TypeScript、TailwindCSS 和 Vite 时 在这篇文章中&#xff0c;我们将逐步引导完成整个过程&#xff0c;了解如何在 2024 年构建自己的 Chrome 插件。无论是经验丰富的开发者还是刚刚起…...

机器学习——Stacking

Stacking&#xff1a; 方法&#xff1a;训练多个模型(可以是强模型)&#xff0c;然后将这些模型的预测结果作为新的特征&#xff0c;输入到下一层新的模型&#xff08;可以是多个&#xff09;中进行训练&#xff0c;从而得到最终的预测结果。 代表&#xff1a;Stacking本身并没…...

在HTML中添加图片

在HTML中添加图片&#xff0c;你需要使用<img>标签。这个标签用于在网页上嵌入图像。<img>是一个空元素&#xff0c;它只包含属性&#xff0c;并且没有闭合标签。要在<img>标签中指定要显示的图像&#xff0c;你需要使用src&#xff08;source的缩写&#xf…...

R语言机器学习算法实战系列(二) SVM算法(Support Vector Machine)

文章目录 介绍原理应用方向下载数据加载R包导入数据数据预处理数据描述数据切割标准化数据设置参数训练模型预测测试数据评估模型模型准确性混淆矩阵模型评估指标ROC CurvePRC Curve特征的重要性保存模型总结系统信息介绍 支持向量机(Support Vector Machine,简称SVM)是一种…...

gdb调试使用记录

使用 GDB&#xff08;GNU Debugger&#xff09;进行问题排查是非常有效的。且可以通过core文件进行排查bug&#xff0c;core文件是程序异常崩溃的时候(段错误&#xff0c;非法指令等)&#xff0c;系统自动生成的core文件。用户可以通过core文件配合gdb调试命令&#xff0c;调试…...

ESXi安装【真机和虚拟机】(超详细)

项目简介&#xff1a; ESXi&#xff08;Elastic Sky X Integrated&#xff09;是VMware公司开发的一种裸机虚拟化管理程序&#xff0c;允许用户在单一物理服务器上运行多个虚拟机&#xff08;VM&#xff09;。它直接安装在服务器硬件上&#xff0c;而不是操作系统之上&#xff…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲

文章目录 前言第一部分&#xff1a;体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分&#xff1a;体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...