BFS 解决多源最短路问题
文章目录
- 多源BFS
- 542. 01 矩阵
- 题目解析
- 算法原理
- 代码实现
- 1020. 飞地的数量
- 题目解析
- 算法原理
- 1765. 地图中的最高点
- 题目解析
- 算法原理
- 代码实现
- 1162. 地图分析
- 题目解析
- 算法原理
- 代码实现
多源BFS
单源最短路: 一个起点、一个终点
多源最短路: 可以多个起点,一个终点
多源BFS: 用BFS解决边权为1的多源最短路(😂)
BFS 解决边权为1的最短路问题
如何解决:
- 解法一:暴力枚举,把多源最短路转换成若干个单源最短路(大概率超时)
- 解法二:把所有源点当成一个“超级源点”,问题就变成了单一的单源最短路问题
想办法将若干个起点,当作一个起点
为什么正确? 如图:

如何代码实现:
- 所有起点加入到队列当中
- 一层一层向外扩展
542. 01 矩阵
题目链接:542. 01 矩阵
题目解析
给我们一个矩阵,矩阵由0和1组成
要我们返回的也是一个矩阵,里面放的是每个位置里0最近的距离

算法原理
- 把所有的0当成起点,1当成终点
- 将所有
0位置加入队列 - 一层一层向外扩展

代码实现
class Solution {
public:int dx[4] = {0, 0, 1, -1};int dy[4] = {1, -1, 0, 0};vector<vector<int>> updateMatrix(vector<vector<int>>& mat){int m = mat.size();int n = mat[0].size();vector<vector<int>> dist(m, vector<int>(n, -1));queue<pair<int, int>> q;for(int i = 0; i < m; i++){for(int j = 0; j < n; j++){if(mat[i][j] == 0){q.push({i, j});dist[i][j] = 0;}}}while(q.size()){auto [a, b] = q.front();q.pop();for(int k = 0; k < 4; k++){int x = dx[k] + a;int y = dy[k] + b;if(x >= 0 && x < m && y >= 0 && y < n && dist[x][y] == -1){dist[x][y] = dist[a][b] + 1;q.push({x, y});}}}return dist;}
};
1020. 飞地的数量
题目链接:1020. 飞地的数量
题目解析
给我们一个矩阵,由0和1组成,1表示陆地,0表示海洋
要我们求出,无法“上岸”数量

算法原理
正难则反:
直接看四个边界,是否有“陆地”
如果有,直接往里面搜索,看有多少连在一起的
class Solution {
public:int dx[4] = {0, 0, 1, -1};int dy[4] = {1, -1, 0, 0};int numEnclaves(vector<vector<int>>& grid){int m = grid.size();int n = grid[0].size();vector<vector<bool>> vis(m, vector<bool>(n));queue<pair<int, int>> q;//四周 1 加入队列for(int j = 0; j < n; j++){if(grid[0][j] == 1) {q.push({0, j});vis[0][j] = true;}if(grid[m-1][j] == 1){q.push({m-1, j});vis[m-1][j] = true;} }for(int i = 0; i < m; i++){if(grid[i][0] == 1){q.push({i, 0});vis[i][0] = true;}if(grid[i][n - 1] == 1){q.push({i, n-1});vis[i][n-1] = true;}}//多源bfswhile(q.size()){auto [a, b] = q.front();q.pop();for(int k = 0; k < 4; k++){int x = dx[k] + a;int y = dy[k] + b;if(x >= 0 && y >= 0 && x < m && y < n && grid[x][y] == 1 && !vis[x][y]){vis[x][y] = true;q.push({x, y});}}}int ret = 0;for(int i = 0; i < m; i++){for(int j = 0; j < n; j++){if(grid[i][j] == 1 && !vis[i][j]) ret++;}}return ret;}
};
1765. 地图中的最高点
题目链接:1765. 地图中的最高点
题目解析
给我们一个矩阵,由陆地和水域组成
isWater[i][j] == 0为陆地isWater[i][j] == 1为水域
规则如下:
- 格子高度非负
- 格子为水域,高度为0
- 相邻格子,高度差不大于1
最终要得出,怎么排列,能得到让最高的高度最大。
算法原理
- 这里最先排列的肯定是水域,如果是水域,设置为
0,即先遍历矩阵,将水域格子加入队列 - 然后一层一层向外扩展

代码实现
class Solution {
public:int dx[4] = {1, -1, 0, 0};int dy[4] = {0, 0, 1, -1};vector<vector<int>> highestPeak(vector<vector<int>>& isWater){int m = isWater.size();int n = isWater[0].size();vector<vector<int>> dist(m,vector<int>(n, -1));queue<pair<int, int>> q;for(int i = 0; i < m; i++){for(int j = 0; j < n; j++){if(isWater[i][j] == 1){dist[i][j] = 0;q.push({i, j});}}}while(q.size()){auto [a, b] = q.front();q.pop();for(int k = 0; k < 4; k++){int x = dx[k] + a;int y = dy[k] + b;if(x >= 0 && x < m && y >= 0 && y < n && dist[x][y] == -1){dist[x][y] = dist[a][b] + 1;q.push({x, y});}}}return dist;}
};
1162. 地图分析
题目链接:1162. 地图分析
题目解析
给我一个矩阵,0和1组成
0表示海洋1表示陆地
要我们找出海洋离陆地的最大距离(曼哈顿距离, a+b)

算法原理
反过来,陆地到海洋的距离,一层一层往外扩
- 陆地加入队列,此时距离为1
- 往外扩展
代码实现
class Solution {
public:int dx[4] = {0, 0, -1, 1};int dy[4] = {1, -1, 0 ,0};int maxDistance(vector<vector<int>>& grid){int m = grid.size();int n = grid[0].size();vector<vector<int>> dist(m, vector<int>(n, -1));queue<pair<int, int>> q;for(int i = 0; i < m; i++){for(int j = 0; j < n; j++){if(grid[i][j] == 1){dist[i][j] = 0;q.push({i, j});}}}int ret = -1;while(q.size()){auto [a, b] = q.front();q.pop();for(int k = 0; k < 4; k++){int x = dx[k] + a;int y = dy[k] + b;if(x >= 0 && x < m && y >= 0 && y < n && dist[x][y] == -1){dist[x][y] = dist[a][b] + 1;q.push({x, y});ret = dist[x][y];}} }return ret;}
};
相关文章:
BFS 解决多源最短路问题
文章目录 多源BFS542. 01 矩阵题目解析算法原理代码实现 1020. 飞地的数量题目解析算法原理 1765. 地图中的最高点题目解析算法原理代码实现 1162. 地图分析题目解析算法原理代码实现 多源BFS 单源最短路: 一个起点、一个终点 多源最短路: 可以多个起点…...
论文笔记:交替单模态适应的多模态表征学习
整理了CVPR2024 Multimodal Representation Learning by Alternating Unimodal Adaptation)论文的阅读笔记 背景MLA框架实验Q1 与之前的方法相比,MLA能否克服模态懒惰并提高多模态学习性能?Q2 MLA在面临模式缺失的挑战时表现如何?Q3 所有模块是否可以有…...
鸿蒙OS 线程间通信
鸿蒙OS 线程间通信概述 在开发过程中,开发者经常需要在当前线程中处理下载任务等较为耗时的操作,但是又不希望当前的线程受到阻塞。此时,就可以使用 EventHandler 机制。EventHandler 是 HarmonyOS 用于处理线程间通信的一种机制,…...
执行 npm报错 Cannot find module ‘../lib/cli.js‘
报错 /usr/local/node/node-v18.20.4-linux-x64/bin/npm node:internal/modules/cjs/loader:1143 throw err; ^ Error: Cannot find module ../lib/cli.js Require stack: - /usr/local/node/node-v18.20.4-linux-x64/bin/npm at Module._resolveFilename (node:inter…...
基于SpringBoot+Vue+MySQL的国产动漫网站
系统展示 用户前台界面 管理员后台界面 系统背景 随着国内动漫产业的蓬勃发展和互联网技术的快速进步,动漫爱好者们对高质量、个性化的国产动漫内容需求日益增长。然而,市场上现有的动漫平台大多以国外动漫为主,对国产动漫的推广和展示存在不…...
AUTOSAR汽车电子嵌入式编程精讲300篇-基于CAN总线的气动控制
目录 前言 知识储备 什么是气动控制: 气动控制基础知识 一、气动元件 二、气路设计 三、气动控制系统 气动控制系统构成图 气动控制系统基本组成功能图 几种常见的气动执行元件实物图 常用气动压力控制阀实物图 常用气动流动控制阀实物图 电磁控制换向发实物图 部…...
Ubuntu 20.04 内核升级后网络丢失问题的解决过程
在 Ubuntu 系统中,内核升级是一个常见的操作,旨在提升系统性能、安全性和兼容性。然而,有时这一操作可能会带来一些意外的副作用,比如导致网络功能的丧失。 本人本来是想更新 Nvidia 显卡的驱动,使用 ubuntu-drivers …...
论文解读《LaMP: When Large Language Models Meet Personalization》
引言:因为导师喊我围绕 “大语言模型的个性化、风格化生成” 展开研究,所以我就找相关论文,最后通过 ACL 官网找到这篇,感觉还不错,就开始解读吧! “说是解读,其实大部分都是翻译哈哈哈&#x…...
Excel VLOOKUP函数怎么用?vlookup函数的使用方法及案例
大家好,这里是效率办公指南! 🔎 在Excel的世界里,VLOOKUP函数无疑是查询和数据分析中的明星。无论是从庞大的数据表中提取特定信息,还是进行数据的快速匹配,VLOOKUP都能大显身手。今天,我们将深…...
专为汽车功能应用打造的 MLX90376GGO、MLX90377GGO、MLX90377GDC-ADB-280 Triaxis®磁位置传感器 IC
一、MLX90376 Triaxis堆叠式高性能位置传感器芯片(模拟/PWM/SENT/SPC) MLX90376GGO-ABA-600 MLX90376GGO-ABA-630 MLX90376GGO-ABA-680 MLX90376是一款磁性绝对位置传感器芯片,适用于要求具备抗杂散磁场干扰性能的360旋转汽车应用。它提供…...
34.贪心算法1
0.贪心算法 1.柠檬水找零(easy) . - 力扣(LeetCode) 题目解析 算法原理 代码 class Solution {public boolean lemonadeChange(int[] bills) {int five 0, ten 0;for (int x : bills) {if (x 5) // 5 元:直接收下…...
DataX实战:从MongoDB到MySQL的数据迁移--修改源码并测试打包
在现代数据驱动的业务环境中,数据迁移和集成是常见的需求。DataX,作为阿里云开源的数据集成工具,提供了强大的数据同步能力,支持多种数据源和目标端。本文将介绍如何使用DataX将数据从MongoDB迁移到MySQL。 环境准备 安装MongoDB…...
Axure设计之表格列冻结(动态面板+中继器)
在Web端产品设计中,复杂的表格展示是常见需求,尤其当表格包含大量列时,如何在有限的屏幕空间内优雅地展示所有信息成为了一个挑战。用户通常需要滚动查看隐藏列,但关键信息列(如ID、操作按钮等)在滚动时保持…...
WPF DataGrid 动态修改某一个单元格的样式
WPF DataGrid 动态修改某一个单元格的样式 <DataGrid Name"main_datagrid_display" Width"1267" Height"193" Grid.Column"1"ItemsSource"{Binding DataGridModels}"><DataGrid.Columns><!--ElementStyle 设…...
如何安装部署kafka
安装和部署Apache Kafka需要以下几个步骤,包括下载 Kafka、配置 ZooKeeper(或者使用 Kafka 自带的 Kafka Raft 模式替代 ZooKeeper),以及启动 Kafka 服务。以下是一个但基于 Linux 的典型安装流程,可以根据需要改装到其…...
Centos7-rpm包管理器方式安装MySQL 5.7.25
前言 本文用于学习通过Mysql压缩包在centos7中安装和配置的过程以及过程中碰到的Bug解决。 Mysql安装包下载和上传 MySQL :: Download MySQL Community Server (Archived Versions)https://downloads.mysql.com/archives/community/访问Mysql官方下载站,选择对应的…...
Project Online 协作版部署方案
目录 前言 第一部分:为什么选择Project Online? 一、核心优势 二、适用场景 第二部分:部署前的准备工作 一、需求分析 二、账户和权限管理 三、培训与支持 第三部分:Project Online 的核心功能 一、项目创建与管理 二、资源管理 三、团队协作 四、风险管理 五…...
小米 13 Ultra机型工程固件 资源预览与刷写说明 步骤解析
小米 13 Ultra机型---机型代码为ishtar 。工程固件可以辅助修复格机或者全檫除分区后的基带修复。可以用于修复TEE损坏。以及一些分区的底层修复。此款固件也可以为更换UFS后的底包。 通过博文了解 1💝💝💝-----此机型工程固件的资源刷写注意事项 2💝💝💝-----此…...
Goweb预防XSS攻击
XSS攻击示例 假设您有一个简单的Web应用程序,其中包含一个用户输入表单,用户可以在其中输入他们的名字,然后这个名字会被显示在页面上。攻击者可以在表单中输入恶意的JavaScript代码,如,如果应用程序没有对这个输入进…...
ICM20948 DMP代码详解(36)
接前一篇文章:ICM20948 DMP代码详解(35) 上一回讲到了icm20948_sensor_setup() ---> inv_icm20948_initialize_auxiliary函数 ---> inv_icm20948_set_slave_compass_id函数,本回开始,就对于inv_icm20948_set_sla…...
观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...
快刀集(1): 一刀斩断视频片头广告
一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...
手机平板能效生态设计指令EU 2023/1670标准解读
手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读,综合法规核心要求、最新修正及企业合规要点: 一、法规背景与目标 生效与强制时间 发布于2023年8月31日(OJ公报&…...
CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...
VisualXML全新升级 | 新增数据库编辑功能
VisualXML是一个功能强大的网络总线设计工具,专注于简化汽车电子系统中复杂的网络数据设计操作。它支持多种主流总线网络格式的数据编辑(如DBC、LDF、ARXML、HEX等),并能够基于Excel表格的方式生成和转换多种数据库文件。由此&…...
spring Security对RBAC及其ABAC的支持使用
RBAC (基于角色的访问控制) RBAC (Role-Based Access Control) 是 Spring Security 中最常用的权限模型,它将权限分配给角色,再将角色分配给用户。 RBAC 核心实现 1. 数据库设计 users roles permissions ------- ------…...
