当前位置: 首页 > news >正文

常用的图像增强的算法之间的联系和区别

Unsharp Mask (USM)、拉普拉斯算子、直方图均衡化和伽马增强是图像处理中常见的技术,但它们在原理、作用和应用场景上有显著不同。以下是对这些方法的详细比较:

1. Unsharp Mask (USM)

  • 原理:USM 是通过对图像进行模糊处理(如高斯模糊),然后将原始图像与模糊图像之间的差值(高频细节)增强,达到锐化图像的目的。
  • 作用:突出图像中的细节和边缘,增强图像的清晰度和视觉效果。
  • 应用场景:主要用于摄影、印刷、医学图像、遥感图像等需要增强图像清晰度和细节的场景。
  • 优点:增强图像的细节和边缘,不会影响平滑区域的亮度和对比度。
  • 缺点:过度使用可能会引入伪影或过度锐化问题。

总结:USM 通过增强图像中的边缘和细节,属于锐化滤波器,重点在于突出高频信息(如边缘和纹理)。

2. 拉普拉斯算子

  • 原理:拉普拉斯算子是一种二阶导数运算,用于检测图像中的边缘。它通过计算每个像素点周围的像素值差异,突出图像中变化剧烈的区域(即边缘)。
  • 作用:主要用于边缘检测,拉普拉斯算子输出的图像是高频部分(边缘)的增强形式。
  • 应用场景:常用于计算机视觉中的边缘检测和轮廓提取任务。
  • 优点:能够很好地检测出图像中的边缘或轮廓。
  • 缺点:敏感于噪声,需要结合平滑滤波器(如高斯模糊)使用,避免检测到噪声边缘。

总结:拉普拉斯算子是一种边缘检测工具,专注于图像的高频部分,重点是发现边缘,而不是增强整个图像的视觉清晰度。

3. 直方图均衡化

  • 原理:直方图均衡化通过调整图像的灰度值分布,使得图像的亮度或灰度分布更为均匀。它对图像的像素值重新分配,使对比度较低的区域得到增强。
  • 作用:提升图像的全局对比度,使得暗部和亮部的细节更加明显。
  • 应用场景:适用于那些对比度较低、光照不均的图像,如医学图像、夜景照片等。
  • 优点:增强整个图像的对比度,尤其是细节较少的区域。
  • 缺点:可能导致图像过度曝光或过暗的区域失去细节。对已经有良好对比度的图像效果不佳,且可能引入伪影。

总结:直方图均衡化主要用于改善图像的亮度和对比度,属于全局调整方法,能够均衡分布灰度值,提升整体视觉效果。

4. 伽马增强(Gamma Correction)

  • 原理:伽马增强通过非线性变换调整图像的亮度。伽马值控制图像的亮度,通常伽马值小于 1 会使暗部细节更为明显,而伽马值大于 1 则会使亮部细节突出。
  • 作用:调整图像的亮度,使暗部或亮部细节更明显,但不会改变整体对比度。
  • 应用场景:伽马增强常用于图像显示设备的校准、增强图像细节(尤其是暗部或亮部),还可以用于预处理以改善图像的显示效果。
  • 优点:灵活调整图像的亮度,对暗部或亮部细节有较好的增强效果。
  • 缺点:伽马值过小或过大可能导致图像失真,暗部或亮部被过度增强。

总结:伽马增强主要用于调整图像的亮度,重点在于控制图像的亮度曲线,以改善暗部或亮部的可见性。

主要区别总结

方法主要作用处理方式适用场景典型效果优缺点
Unsharp Mask (USM)锐化图像,增强细节提取高频信息(边缘)并增强摄影、印刷、医学影像、遥感提升图像清晰度,突出边缘增强细节,过度使用会产生伪影
拉普拉斯算子边缘检测计算二阶导数,突出边缘边缘检测、轮廓提取显示图像中的边缘信息敏感于噪声,需结合平滑滤波器
直方图均衡化提高图像对比度重新分配像素值,均衡灰度分布对比度低的图像,光照不均提升暗部和亮部细节全局调整,可能过度曝光或丢失细节
伽马增强调整图像亮度伽马非线性变换校准显示设备,提升图像细节使暗部或亮部细节更明显灵活调整亮度,可能导致失真

总结:

  • USM:用于锐化图像,增强细节和边缘。
  • 拉普拉斯算子:用于边缘检测和轮廓提取。
  • 直方图均衡化:调整图像的灰度分布,改善全局对比度。
  • 伽马增强:调整图像亮度,增强暗部或亮部细节。

每个方法都有其特定的应用场景,通常根据图像处理的需求来选择合适的技术。

相关文章:

常用的图像增强的算法之间的联系和区别

Unsharp Mask (USM)、拉普拉斯算子、直方图均衡化和伽马增强是图像处理中常见的技术,但它们在原理、作用和应用场景上有显著不同。以下是对这些方法的详细比较: 1. Unsharp Mask (USM) 原理:USM 是通过对图像进行模糊处理(如高斯…...

SpringBoot+Vue考试系统免费分享

源码说明: 这是一个开源的SpringBoot与Vue开发的在线考试系统。经过站长测试,系统稳定可用,允许重复考试。 环境: 需要安装的环境包括Node.js v14.21.3、JDK8、Maven以及MySQL 5.7。 前端部署教程: 执行 npm inst…...

音视频入门基础:FLV专题(1)——FLV官方文档下载

一、FLV简介 Flash Video(简称FLV),是一种网络视频格式,用作流媒体格式,它的出现有效地解决了视频文件导入Flash后,使导出的SWF文件体积庞大,不能在网络上有效使用等缺点。 一般FLV文件包在SW…...

使用c#制作一个小型桌面程序

封装dll 首先使用visual stdio 创建Dll新项目,然后属性管理器导入自己的工程属性表(如果没有可以参考visual stdio 如何配置opencv等其他环境) 创建完成后 系统会自动生成一些文件,其中 pch.cpp 先不要修改,pch.h中先导入自己需…...

Clip studio paint百度云下载:附安装包+教程

首先补一个介绍,Clip Studio Paint(即CSP):这是一款专业的绘画和漫画创作软件,拥有丰富的绘画工具,适合漫画创作者使用。其界面友好,工具齐全,能够满足漫画创作中的各种需求。 用过…...

从Yargs源码学习中间件的设计

yargs中间件介绍 yargs 是一个用于解析命令行参数的流行库,它能帮助开发者轻松地定义 CLI(命令行接口),并提供参数处理、命令组织、help文本自动生成等功能。今天我们来学习一下它对中间件的支持。 中间件的API详细信息&#xff0…...

高级I/O知识分享【epoll || Reactor ET,LT模式】

博客主页:花果山~程序猿-CSDN博客 文章分栏:Linux_花果山~程序猿的博客-CSDN博客 关注我一起学习,一起进步,一起探索编程的无限可能吧!让我们一起努力,一起成长! 目录 一,接口 epo…...

Matlab 的.m 文件批量转成py文件

在工作中碰到了一个问题,需要将原来用matlab gui做出来的程序改为python程序,因为涉及到很多文件,所以在网上搜了搜有没有直接能转化的库。参考了【Matlab】一键Matlab代码转python代码详细教程_matlab2python-CSDN博客 这位博主提到的matla…...

【软考】传输层协议TCP与UDP

目录 1. TCP1.1 说明1.2 三次握手 2. UDP3. 例题3.1 例题1 1. TCP 1.1 说明 1.TCP(Transmission Control Protocol,传输控制协议)是整个 TCP/IP 协议族中最重要的协议之一。2.它在IP提供的不可靠数据服务的基础上为应用程序提供了一个可靠的、面向连接的、全双工的…...

Arthas dashboard(当前系统的实时数据面板)

文章目录 二、命令列表2.1 jvm相关命令2.1.1 dashboard(当前系统的实时数据面板) 二、命令列表 2.1 jvm相关命令 2.1.1 dashboard(当前系统的实时数据面板) 使用场景: 在 Arthas 中,dashboard 命令用于提…...

微服务保护之熔断降级

在微服务架构中,服务之间的调用是通过网络进行的,网络的不确定性和依赖服务的不可控性,可能导致某个服务出现异常或性能问题,进而引发整个系统的故障,这被称为 微服务雪崩。为了防止这种情况发生,常用的一些…...

TomCat乱码问题

TomCat控制台乱码问题 乱码问题解决: 响应乱码问题 向客户端响应数据: package Servlet;import jakarta.servlet.ServletException; import jakarta.servlet.annotation.WebServlet; import jakarta.servlet.http.HttpServlet; import jakarta.servl…...

依赖库查看工具Dependencies

依赖库查看工具:Dependencies Dependencies 是一款 Windows 平台下的静态分析工具,用来分析可执行文件(EXE、DLL 等)所依赖的动态链接库(DLL)。它可以帮助开发者和系统管理员快速查找程序在运行时可能缺少的…...

Kafka 下载安装及使用总结

1. 下载安装 官网下载地址:Apache Kafka 下载对应的文件 上传到服务器上,解压 tar -xzf kafka_2.13-3.7.0.tgz目录结果如下 ├── bin │ └── windows ├── config │ └── kraft ├── libs ├── licenses └── site-docs官方文档…...

python实现多个pdf文件合并

打印发票时,需要将pdf合并成一个,单页两张打印。网上一些pdf合并逐渐收费,这玩意儿都能收费?自己写一个脚本使用。 实现代码: 输入pdf文件夹路径data_dir,统计目录下的“合并后的PDF”文件夹下,…...

2409js,学习js2

原文 全局对象 function sayHi() {alert("Hello"); }// 全局对象的函数. window.sayHi(); alert(window.innerHeight);更改背景 document.body.style.background "red";setTimeout(() > document.body.style.background "", 1000);当前地…...

SpellBERT: A Lightweight Pretrained Model for Chinese Spelling Check(EMNLP2021)

SpellBERT: A Lightweight Pretrained Model for Chinese Spelling Check(EMNLP2021) 一.概述 作者认为许多模型利用预定义的混淆集来学习正确字符与其视觉上相似或语音上相似的误用字符之间的映射,但映射可能是域外的。为此,我们提出了SpellBERT&…...

【机器学习】--- 决策树与随机森林

文章目录 决策树与随机森林的改进:全面解析与深度优化目录1. 决策树的基本原理2. 决策树的缺陷及改进方法2.1 剪枝技术2.2 树的深度控制2.3 特征选择的优化 3. 随机森林的基本原理4. 随机森林的缺陷及改进方法4.1 特征重要性改进4.2 树的集成方法优化4.3 随机森林的…...

[SAP ABAP] 创建域

我们可以使用事务码SE11创建域 输入要创建的域的名称,然后点击创建 输入简短描述,选择数据类型和输入字符数 激活并保存域,创建的域才能够生效 补充扩展练习 创建一个有关"性别"基本信息的域...

STM32 通过 SPI 驱动 W25Q128

目录 一、STM32 SPI 框图1、通讯引脚2、时钟控制3、数据控制逻辑4、整体控制逻辑5、主模式收发流程及事件说明如下: 二、程序编写1、SPI 初始化2、W25Q128 驱动代码2.1 读写厂商 ID 和设备 ID2.2 读数据2.3 写使能/写禁止2.4 读/写状态寄存器2.5 擦除扇区2.6 擦除整…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

Kafka入门-生产者

生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...