当前位置: 首页 > news >正文

【机器学习】--- 决策树与随机森林

在这里插入图片描述

文章目录

  • 决策树与随机森林的改进:全面解析与深度优化
    • 目录
    • 1. 决策树的基本原理
    • 2. 决策树的缺陷及改进方法
      • 2.1 剪枝技术
      • 2.2 树的深度控制
      • 2.3 特征选择的优化
    • 3. 随机森林的基本原理
    • 4. 随机森林的缺陷及改进方法
      • 4.1 特征重要性改进
      • 4.2 树的集成方法优化
      • 4.3 随机森林的并行化处理
      • 4.4 使用极端随机树(Extra Trees)
    • 5. 代码示例:如何在实践中使用这些改进
      • 5.1 决策树的剪枝与优化
      • 5.2 随机森林的改进与并行化实现
    • 6. 总结

决策树与随机森林的改进:全面解析与深度优化

决策树和随机森林是机器学习中的经典算法,因其易于理解和使用广泛而备受关注。尽管如此,随着数据集规模和复杂性增加,这些算法的性能可能会遇到瓶颈。因此,研究决策树与随机森林的改进成为了机器学习领域的一个热点话题。本博客将详细探讨决策树与随机森林的基本原理、其存在的问题以及如何通过多种改进方法提升其性能。

目录

1. 决策树的基本原理

决策树是一种贪心算法,通过递归地分裂数据集构建树形结构。其主要目标是通过最大化信息增益或最小化基尼系数等指标,在每一步找到最佳的特征进行分割。

决策树的构建步骤包括:

  • 选择最佳的特征和阈值
  • 递归地将数据集划分为子集
  • 构建叶节点,存储预测的类别或值
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split# 加载数据集
data = load_iris()
X, y = data.data, data.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 创建决策树分类器
tree = DecisionTreeClassifier()
tree.fit(X_train, y_train)# 评估模型
accuracy = tree.score(X_test, y_test)
print(f"决策树准确率: {accuracy:.4f}")

在上面的代码中,我们使用了 sklearnDecisionTreeClassifier 来训练决策树,并对其进行简单的性能评估。

2. 决策树的缺陷及改进方法

尽管决策树在许多情况下表现良好,但它存在一些问题,如过拟合、对噪声数据敏感以及对训练集的极端依赖。这些问题可以通过以下几种方式改进:

2.1 剪枝技术

决策树容易陷入过拟合的困境,尤其是在构建过于复杂的树结构时。剪枝是一种常见的解决方案,分为预剪枝和后剪枝:

  • 预剪枝:在构建树的过程中设定限制条件,如最大深度、最小样本数等,提前终止树的生长。
  • 后剪枝:在树构建完成后,通过回溯移除冗余节点,从而简化树结构。
# 设置决策树的最大深度为3
pruned_tree = DecisionTreeClassifier(max_depth=3)
pruned_tree.fit(X_train, y_train)# 评估模型
pruned_accuracy = pruned_tree.score(X_test, y_test)
print(f"剪枝后的决策树准确率: {pruned_accuracy:.4f}")

2.2 树的深度控制

树的深度过大会导致过拟合,而过小则会导致欠拟合。因此,设置合适的最大深度是一个非常重要的参数调优步骤。

# 使用网格搜索进行最大深度调参
from sklearn.model_selection import GridSearchCVparam_grid = {'max_depth': [3, 5, 10, 20, None]}
grid_search = GridSearchCV(DecisionTreeClassifier(), param_grid, cv=5)
grid_search.fit(X_train, y_train)print(f"最佳深度: {grid_search.best_params_}")

2.3 特征选择的优化

传统的决策树使用信息增益或基尼系数来选择特征,但在某些数据集上,这些标准可能并不理想。可以考虑引入新的特征选择标准,比如均方误差(MSE)或基于正则化的方法。

# 基于均方误差的决策树回归模型
from sklearn.tree import DecisionTreeRegressorregressor = DecisionTreeRegressor(criterion='mse')
regressor.fit(X_train, y_train)

3. 随机森林的基本原理

随机森林是一种集成学习方法,通过生成多个决策树并结合它们的预测结果来提高模型的稳定性和准确性。它通过引入随机性(随机特征选择和数据子采样)来减少过拟合的风险。

from sklearn.ensemble import RandomForestClassifier# 创建随机森林分类器
forest = RandomForestClassifier(n_estimators=100)
forest.fit(X_train, y_train)# 评估随机森林模型
forest_accuracy = forest.score(X_test, y_test)
print(f"随机森林准确率: {forest_accuracy:.4f}")

4. 随机森林的缺陷及改进方法

尽管随机森林具有许多优点,但它也有一些缺点,如计算开销较大、特征重要性计算偏差等。以下是一些改进方法。

4.1 特征重要性改进

随机森林中的特征重要性通常基于每个特征在决策树中的分裂贡献。但这种方法容易偏向高基数特征。可以通过正则化方法或基于模型输出的特征重要性计算进行改进。

# 提取特征重要性
importances = forest.feature_importances_
for i, importance in enumerate(importances):print(f"特征 {i}: 重要性 {importance:.4f}")

4.2 树的集成方法优化

除了随机森林,还可以采用更复杂的集成方法,如极端梯度提升(XGBoost)或LightGBM,它们通过优化决策树的构建过程,提高了模型的性能。

from xgboost import XGBClassifier# 使用XGBoost训练模型
xgb = XGBClassifier(n_estimators=100)
xgb.fit(X_train, y_train)# 评估XGBoost模型
xgb_accuracy = xgb.score(X_test, y_test)
print(f"XGBoost准确率: {xgb_accuracy:.4f}")

4.3 随机森林的并行化处理

随机森林的另一个问题是其计算量较大。通过并行化处理,可以加速模型的训练过程。n_jobs 参数可以控制并行化的线程数。

# 并行化的随机森林
parallel_forest = RandomForestClassifier(n_estimators=100, n_jobs=-1)
parallel_forest.fit(X_train, y_train)

4.4 使用极端随机树(Extra Trees)

极端随机树(Extra Trees)是一种与随机森林类似的集成方法,不同之处在于它在选择分割点时使用完全随机的方式,从而进一步提高模型的泛化能力。

from sklearn.ensemble import ExtraTreesClassifier# 创建极端随机树分类器
extra_trees = ExtraTreesClassifier(n_estimators=100)
extra_trees.fit(X_train, y_train)# 评估极端随机树模型
extra_trees_accuracy = extra_trees.score(X_test, y_test)
print(f"极端随机树准确率: {extra_trees_accuracy:.4f}")

5. 代码示例:如何在实践中使用这些改进

5.1 决策树的剪枝与优化

from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_wine# 加载数据集
data = load_wine()
X, y = data.data, data.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 创建带剪枝的决策树
tree = DecisionTreeClassifier(max_depth=5, min_samples_split=10, min_samples_leaf=5)
tree.fit(X_train, y_train)# 评估模型
accuracy = tree.score(X_test, y_test)
print(f"剪枝后的决策树准确率: {accuracy:.4f}")

5.2 随机森林的改进与并行化实现

from sklearn.ensemble import RandomForestClassifier# 创建并行化的随机森林分类器
parallel_forest = RandomForestClassifier(n_estimators=200, max_depth=10, n_jobs=-1, random_state=42)
parallel_forest.fit(X_train, y_train)# 评估并行化随机森林模型
accuracy = parallel_forest.score(X_test, y_test)
print(f"并行化随机森林准确率: {accuracy:.4f}")

6. 总结

决策树和随机森林作为经典的机器学习算法,已经在众多领域得到了广泛应用。然而,它们的性能在面对复杂的数据时可能会出现瓶颈。通过剪枝、树深度控制、优化特征选择等方法,我们可以提高决策树的泛化能力。同时,通过特征重要性改进、极端随机树的引入和并行化处理,可以在提升随机森林性能的同时减少计算资源的消耗。

相关文章:

【机器学习】--- 决策树与随机森林

文章目录 决策树与随机森林的改进:全面解析与深度优化目录1. 决策树的基本原理2. 决策树的缺陷及改进方法2.1 剪枝技术2.2 树的深度控制2.3 特征选择的优化 3. 随机森林的基本原理4. 随机森林的缺陷及改进方法4.1 特征重要性改进4.2 树的集成方法优化4.3 随机森林的…...

[SAP ABAP] 创建域

我们可以使用事务码SE11创建域 输入要创建的域的名称,然后点击创建 输入简短描述,选择数据类型和输入字符数 激活并保存域,创建的域才能够生效 补充扩展练习 创建一个有关"性别"基本信息的域...

STM32 通过 SPI 驱动 W25Q128

目录 一、STM32 SPI 框图1、通讯引脚2、时钟控制3、数据控制逻辑4、整体控制逻辑5、主模式收发流程及事件说明如下: 二、程序编写1、SPI 初始化2、W25Q128 驱动代码2.1 读写厂商 ID 和设备 ID2.2 读数据2.3 写使能/写禁止2.4 读/写状态寄存器2.5 擦除扇区2.6 擦除整…...

C#进阶-基于雪花算法的订单号设计与实现

在现代电商系统和分布式系统中,高效地生成全局唯一的订单号是一个关键需求。订单号不仅需要唯一性,还需要具备一定的趋势递增性,以满足数据库索引和排序的需求。本文将介绍如何在C#中使用雪花算法(Snowflake)设计和实现…...

低版本SqlSugar的where条件中使用可空类型报语法错误

SQLServer数据表中有两列可空列,均为数值类型,同时在数据库中录入测试数据,Age和Height列均部分有值。   使用SqlSugar的DbFirst功能生成数据库表类,其中Age、Height属性均为可空类型。   开始使用的SqlSugar版本较低&…...

跨游戏引擎的H5渲染解决方案(腾讯)

本文是腾讯的一篇H5 跨引擎解决方案的精炼。 介绍 本文通过实现基于精简版的HTML5(HyperText Mark Language 5)来屏蔽不同引擎,平台底层的差异。 好处: 采用H5的开发方式,可以将开发和运营分离,运营部门自…...

docker构建java镜像,运行镜像出现日志 no main manifest attribute, in /xxx.jar

背景 本文主要是一个随笔,记录一下出现"no main manifest attribute"的解决办法 问题原因 主要是近期在构建一个镜像,在镜像构建成功后,运行一直提示"no main manifest attribute",当时还在想,是不是Dockerfile写错了,后来仔细检查了一下,发现是…...

react + antDesignPro 企业微信扫码登录

效果 实现步骤 1、项目中document.ejs文件引入企微js链接 注意&#xff1a;技术栈是使用的react antDesignPro&#xff0c;不同的技术栈有不同的入口文件&#xff08;如vue在html文件引入&#xff09; <script src"https://wwcdn.weixin.qq.com/node/wework/wwopen/j…...

Go-知识-定时器

Go-知识-定时器 1. 介绍2. Timer使用场景2.1 设定超时时间2.2 延迟执行某个方法 3. Timer 对外接口3.1 创建定时器3.2 停止定时器3.3 重置定时器3.4 After3.5 AfterFunc 4. Timer 的实现原理4.1 Timer数据结构4.1.1 Timer4.1.2 runtimeTimer 4.2 Timer 实现原理4.2.1 创建Timer…...

【alluxio编译报错】Some files do not have the expected license header

Some files do not have the expected license header 快捷导航 在开始解决问题之前&#xff0c;大家可以通过下面的导航快速找到相关资源啦&#xff01;&#x1f4a1;&#x1f447; 快捷导航链接地址备注相关文档-ambaribigtop自定义组件集成https://blog.csdn.net/TTBIGDA…...

基于SpringBoot+Vue的商城积分系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、SSM项目源码 精品专栏&#xff1a;Java精选实战项目源码、Python精…...

docker-compose up 报错:KeyError: ‘ContainerConfig‘

使用命令查看所有容器&#xff1a; docker ps -a 找到有异常的容器删除 docker rm {容器id} 后续发现还是会出现这种情况&#xff0c;尝试使用更高版本的docker-compose后解决...

股票行情接口,量化金融交易在未来会被广泛应用吗

炒股自动化&#xff1a;申请官方API接口&#xff0c;散户也可以 python炒股自动化&#xff08;0&#xff09;&#xff0c;申请券商API接口 python炒股自动化&#xff08;1&#xff09;&#xff0c;量化交易接口区别 Python炒股自动化&#xff08;2&#xff09;&#xff1a;获取…...

[SDX35+WCN6856]SDX35 开启class/gpio子系统配置操作说明

SDX35 SDX35介绍 SDX35设备是一种多模调制解调器芯片,支持 4G/5G sub-6 技术。它是一个4nm芯片专为实现卓越的性能和能效而设计。它包括一个 1.9 GHz Cortex-A7 应用处理器。 SDX35主要特性 ■ 3GPP Rel. 17 with 5G Reduced Capability (RedCap) support. Backward compati…...

react:React Hook函数

使用规则 只能在组件中或者其他自定义的Hook函数中调用 只能在组件的顶层调用&#xff0c;不能嵌套在if、for、 其他函数中 基础Hook 函数 useState useState是一个hook函数&#xff0c;它允许我们向组件中添加一个状态变量&#xff0c;从而控制影响组件的渲染结果 示例1…...

算法学习2

学习目录 一.插入排序 一.插入排序 从数组的第一个元素开始&#xff0c;当前元素与其前一个元素进行比较&#xff1b; 大于&#xff08;或小于时&#xff09;将其进行交换&#xff0c;即当前元素替换到前一位&#xff1b; 再将该元素与替换后位置的前一个元素进行交换&#xf…...

vue循环渲染动态展示内容案例(“更多”按钮功能)

当我们在网页浏览时&#xff0c;常常会有以下情况&#xff1a;要展示的内容太多&#xff0c;但展示空间有限&#xff0c;比如我们要在页面的一部分空间中展示较多的内容放不下&#xff0c;通常会有两种解决方式&#xff1a;分页&#xff0c;“更多”按钮。 今天我们的案例用于…...

好用的工具网址

代码类&#xff1a; 1,json解析&#xff1a;JSON在线解析及格式化验证 - JSON.cn 2.传参转化编码 在线url网址编码、解码器-BeJSON.com 日常&#xff1a; 1.莆田医院查询&#xff1a;滚蛋吧&#xff01;莆田系...

【Temporal】方法规范

在workflow或者childWorkflow的方法代码中&#xff0c;不能使用golang的一些库方法&#xff0c;比如sleep&#xff0c;go协程等&#xff0c;必须使用其对应的封装方法&#xff0c;比如对应关系如下&#xff1a; time.Sleep -> workflow.Sleepgo xx -> workflow.Go(xx) 这…...

Python实现图形学曲线和曲面的Bezier曲线算法

目录 使用Python实现图形学曲线和曲面的Bezier曲线算法引言Bezier曲线的数学原理1. Bezier曲线定义2. Bezier曲线的递归形式 Python实现Bezier曲线算法1. 代码实现 代码详解使用示例Bezier曲线的特点Bezier曲面的扩展Bezier曲面类实现 总结 使用Python实现图形学曲线和曲面的Be…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中&#xff0c;手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力&#xff0c;既支持点击、长按、拖拽等基础单一手势的精细控制&#xff0c;也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

JS设计模式(4):观察者模式

JS设计模式(4):观察者模式 一、引入 在开发中&#xff0c;我们经常会遇到这样的场景&#xff1a;一个对象的状态变化需要自动通知其他对象&#xff0c;比如&#xff1a; 电商平台中&#xff0c;商品库存变化时需要通知所有订阅该商品的用户&#xff1b;新闻网站中&#xff0…...

Java编程之桥接模式

定义 桥接模式&#xff08;Bridge Pattern&#xff09;属于结构型设计模式&#xff0c;它的核心意图是将抽象部分与实现部分分离&#xff0c;使它们可以独立地变化。这种模式通过组合关系来替代继承关系&#xff0c;从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...

Kafka入门-生产者

生产者 生产者发送流程&#xff1a; 延迟时间为0ms时&#xff0c;也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于&#xff1a;异步发送不需要等待结果&#xff0c;同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

Vite中定义@软链接

在webpack中可以直接通过符号表示src路径&#xff0c;但是vite中默认不可以。 如何实现&#xff1a; vite中提供了resolve.alias&#xff1a;通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...