【Leetcode:997. 找到小镇的法官 + 入度出度】

| 🚀 算法题 🚀 |
🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀
🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨
🌲 作者简介:硕风和炜,CSDN-Java领域优质创作者🏆,保研|国家奖学金|高中学习JAVA|大学完善JAVA开发技术栈|面试刷题|面经八股文|经验分享|好用的网站工具分享💎💎💎
🌲 恭喜你发现一枚宝藏博主,赶快收入囊中吧🌻
🌲 人生如棋,我愿为卒,行动虽慢,可谁曾见我后退一步?🎯🎯
| 🚀 算法题 🚀 |


🍔 目录
- 🚩 题目链接
- ⛲ 题目描述
- 🌟 求解思路&实现代码&运行结果
- ⚡ 入度出度
- 🥦 求解思路
- 🥦 实现代码
- 🥦 运行结果
- 💬 共勉
🚩 题目链接
- 997. 找到小镇的法官
⛲ 题目描述
小镇里有 n 个人,按从 1 到 n 的顺序编号。传言称,这些人中有一个暗地里是小镇法官。
如果小镇法官真的存在,那么:
- 小镇法官不会信任任何人。
- 每个人(除了小镇法官)都信任这位小镇法官。
- 只有一个人同时满足属性 1 和属性 2 。
给你一个数组 trust ,其中 trust[i] = [ai, bi] 表示编号为 ai 的人信任编号为 bi 的人。
如果小镇法官存在并且可以确定他的身份,请返回该法官的编号;否则,返回 -1 。
示例 1:
输入:n = 2, trust = [[1,2]]
输出:2
示例 2:
输入:n = 3, trust = [[1,3],[2,3]]
输出:3
示例 3:
输入:n = 3, trust = [[1,3],[2,3],[3,1]]
输出:-1
提示:
1 <= n <= 1000
0 <= trust.length <= 104
trust[i].length == 2
trust 中的所有trust[i] = [ai, bi] 互不相同
ai != bi
1 <= ai, bi <= n
🌟 求解思路&实现代码&运行结果
⚡ 入度出度
🥦 求解思路
- 计算各节点的入度和出度,法官存在的情况下,法官不相信任何人,每个人(除了法官外)都信任法官,且只有一名法官。因此法官这个节点的入度是 n−1, 出度是 0。
- 只要满足上述的判断条件,直接返回当前的节点,否则,返回-1即可。
- 有了基本的思路,接下来我们就来通过代码来实现一下的解法。
🥦 实现代码
class Solution {public int findJudge(int n, int[][] trust) {int[] input = new int[n + 1], output = new int[n + 1];int m = trust.length;for (int i = 0; i < m; i++) {int x = trust[i][0], y = trust[i][1];input[y]++;output[x]++;}for (int i = 1; i < n + 1; i++) {if (input[i] == n - 1 && output[i] == 0) {return i;}}return -1;}
}
🥦 运行结果

💬 共勉
| 最后,我想和大家分享一句一直激励我的座右铭,希望可以与大家共勉! |


相关文章:
【Leetcode:997. 找到小镇的法官 + 入度出度】
🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…...
大数据Flink(一百二十三):五分钟上手Flink MySQL连接器
文章目录 五分钟上手Flink MySQL连接器 一、创建数据库表 二、创建session集群 三、源表查询 四、窗口计算 五、结果数据写回数据库 五分钟上手Flink MySQL连接器 MySQL Connector可以将本地或远程的MySQL数据库连接到Flink中&#x…...
SYN Flood攻击原理,SYN Cookie算法
SYN Flood是一种非常危险而常见的Dos攻击方式。到目前为止,能够有效防范SYN Flood攻击的手段并不多,SYN Cookie就是其中最著名的一种。 1. SYN Flood攻击原理 SYN Flood攻击是一种典型的拒绝服务(Denial of Service)攻击。所谓的拒绝服务攻击就是通过进…...
计组(蒋)期末速成笔记1
蒋本珊计组期末不挂科复习笔记 第1章 概论 第2章 数据的机器层次表示 第3章 指令系统 第4章 数值的机器运算 第5章 存储系统和结构 第6章 中央处理器 第7章 总线 第1章 概论 蒋本珊计组期末不挂科复习笔记知道你快考试了,莫慌! 第1章 概论1.1 冯诺依曼计…...
mysql学习教程,从入门到精通,SQL 更新数据(UPDATE 语句)(17)
1、SQL 更新数据(UPDATE 语句) SQL UPDATE 需要指定要更新的表、要修改的列以及新值,并且通常会通过WHERE子句来指定哪些行需要被更新。下面是一个简单的示例,说明如何使用UPDATE语句。 假设我们有一个名为employees的表…...
【吊打面试官系列-MySQL面试题】MyISAM 表格将在哪里存储,并且还提供其存储格式?
大家好,我是锋哥。今天分享关于【MyISAM 表格将在哪里存储,并且还提供其存储格式?】面试题,希望对大家有帮助; MyISAM 表格将在哪里存储,并且还提供其存储格式? 每个 MyISAM 表格以三种格式存储…...
常用的图像增强的算法之间的联系和区别
Unsharp Mask (USM)、拉普拉斯算子、直方图均衡化和伽马增强是图像处理中常见的技术,但它们在原理、作用和应用场景上有显著不同。以下是对这些方法的详细比较: 1. Unsharp Mask (USM) 原理:USM 是通过对图像进行模糊处理(如高斯…...
SpringBoot+Vue考试系统免费分享
源码说明: 这是一个开源的SpringBoot与Vue开发的在线考试系统。经过站长测试,系统稳定可用,允许重复考试。 环境: 需要安装的环境包括Node.js v14.21.3、JDK8、Maven以及MySQL 5.7。 前端部署教程: 执行 npm inst…...
音视频入门基础:FLV专题(1)——FLV官方文档下载
一、FLV简介 Flash Video(简称FLV),是一种网络视频格式,用作流媒体格式,它的出现有效地解决了视频文件导入Flash后,使导出的SWF文件体积庞大,不能在网络上有效使用等缺点。 一般FLV文件包在SW…...
使用c#制作一个小型桌面程序
封装dll 首先使用visual stdio 创建Dll新项目,然后属性管理器导入自己的工程属性表(如果没有可以参考visual stdio 如何配置opencv等其他环境) 创建完成后 系统会自动生成一些文件,其中 pch.cpp 先不要修改,pch.h中先导入自己需…...
Clip studio paint百度云下载:附安装包+教程
首先补一个介绍,Clip Studio Paint(即CSP):这是一款专业的绘画和漫画创作软件,拥有丰富的绘画工具,适合漫画创作者使用。其界面友好,工具齐全,能够满足漫画创作中的各种需求。 用过…...
从Yargs源码学习中间件的设计
yargs中间件介绍 yargs 是一个用于解析命令行参数的流行库,它能帮助开发者轻松地定义 CLI(命令行接口),并提供参数处理、命令组织、help文本自动生成等功能。今天我们来学习一下它对中间件的支持。 中间件的API详细信息࿰…...
高级I/O知识分享【epoll || Reactor ET,LT模式】
博客主页:花果山~程序猿-CSDN博客 文章分栏:Linux_花果山~程序猿的博客-CSDN博客 关注我一起学习,一起进步,一起探索编程的无限可能吧!让我们一起努力,一起成长! 目录 一,接口 epo…...
Matlab 的.m 文件批量转成py文件
在工作中碰到了一个问题,需要将原来用matlab gui做出来的程序改为python程序,因为涉及到很多文件,所以在网上搜了搜有没有直接能转化的库。参考了【Matlab】一键Matlab代码转python代码详细教程_matlab2python-CSDN博客 这位博主提到的matla…...
【软考】传输层协议TCP与UDP
目录 1. TCP1.1 说明1.2 三次握手 2. UDP3. 例题3.1 例题1 1. TCP 1.1 说明 1.TCP(Transmission Control Protocol,传输控制协议)是整个 TCP/IP 协议族中最重要的协议之一。2.它在IP提供的不可靠数据服务的基础上为应用程序提供了一个可靠的、面向连接的、全双工的…...
Arthas dashboard(当前系统的实时数据面板)
文章目录 二、命令列表2.1 jvm相关命令2.1.1 dashboard(当前系统的实时数据面板) 二、命令列表 2.1 jvm相关命令 2.1.1 dashboard(当前系统的实时数据面板) 使用场景: 在 Arthas 中,dashboard 命令用于提…...
微服务保护之熔断降级
在微服务架构中,服务之间的调用是通过网络进行的,网络的不确定性和依赖服务的不可控性,可能导致某个服务出现异常或性能问题,进而引发整个系统的故障,这被称为 微服务雪崩。为了防止这种情况发生,常用的一些…...
TomCat乱码问题
TomCat控制台乱码问题 乱码问题解决: 响应乱码问题 向客户端响应数据: package Servlet;import jakarta.servlet.ServletException; import jakarta.servlet.annotation.WebServlet; import jakarta.servlet.http.HttpServlet; import jakarta.servl…...
依赖库查看工具Dependencies
依赖库查看工具:Dependencies Dependencies 是一款 Windows 平台下的静态分析工具,用来分析可执行文件(EXE、DLL 等)所依赖的动态链接库(DLL)。它可以帮助开发者和系统管理员快速查找程序在运行时可能缺少的…...
Kafka 下载安装及使用总结
1. 下载安装 官网下载地址:Apache Kafka 下载对应的文件 上传到服务器上,解压 tar -xzf kafka_2.13-3.7.0.tgz目录结果如下 ├── bin │ └── windows ├── config │ └── kraft ├── libs ├── licenses └── site-docs官方文档…...
JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
React19源码系列之 事件插件系统
事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...
Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...
中医有效性探讨
文章目录 西医是如何发展到以生物化学为药理基础的现代医学?传统医学奠基期(远古 - 17 世纪)近代医学转型期(17 世纪 - 19 世纪末)现代医学成熟期(20世纪至今) 中医的源远流长和一脉相承远古至…...
排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...
