当前位置: 首页 > news >正文

[数据结构与算法·C++] 笔记 1.4 算法复杂性分析

1.4 算法复杂性分析

算法的渐进分析

  • 数据规模 n 逐步增大时, f(n)的增长趋势
  • 当 n 增大到一定值以后,计算公式中影响最大的就是 n 的幂次最高的项
  • 其他的常数项和低幂次项都可以忽略

大O表示法

  • 函数f,g定义域为自然数,值域非负实数集
  • 定义: 如果存在正数c和n,使得对任意的 n > = n 0 n >=n_0 n>=n0,都有 f ( n ) ≤ c g ( n ) f(n)≤cg(n) f(n)cg(n)
  • f ( n ) f(n) f(n) 在集合 O ( g ( n ) ) O(g(n)) O(g(n)) 中,简称 f ( n ) 是 O ( g ( n ) ) f(n)是 O(g(n)) f(n)O(g(n)) 的, 或 f ( n ) = O ( g ( n ) ) f(n)= O(g(n)) f(n)=O(g(n))
  • 大 O 表示法: 表达函数增长率上限
  • 一个函数增长率的上限可能不止一个
  • 当上、下限相同时则可用 Θ 表示法(大O最常用, 大Θ也可简单看作大O)

大O表示法的单位时间

  • 简单布尔或算术运算

  • 简单 I/O

    • 指函数的输入/输出
    • 例如,从数组读数据等操作
    • 不包括键盘文件等 I/O
  • 函数返回

大 O 表示法的运算法则

  • 加法规则: f 1 ( n ) + f 2 ( n ) = O ( m a x ( f 1 ( n ) , f 2 ( n ) ) ) f_1(n)+f_2(n)=O(max(f_1(n),f_2(n))) f1(n)+f2(n)=O(max(f1(n),f2(n)))

    • 顺序结构,if 结构,switch 结构
  • 乘法规则: f 1 ( n ) ⋅ f 2 ( n ) = O ( f 1 ( n ) ⋅ f 2 ( n ) ) f_1(n)·f_2(n) =O(f_1(n)·f₂(n)) f1(n)f2(n)=O(f1(n)f2(n))

    • for, while, do-while 结构 (复杂度相乘)
    • 例如:
      for(i=0; i<n; i++)for (j=i; j<n; j++)k++;
      
      • 上述两个循环的复杂度为 n 2 = n ⋅ n n^2=n \cdot n n2=nn

大Ω表示法

  • 定义 :如果存在正数c和 no,使得对所有的 n ≥ n 0 n≥n_0 nn0都有 f ( n ) ≥ c g ( n ) f(n)≥ cg(n) f(n)cg(n), 则称 f(n) 在集合 Ω ( g ( n ) ) Ω(g(n)) Ω(g(n)) 中,或简称 f ( n ) f(n) f(n) Ω ( g ( n ) ) Ω(g(n)) Ω(g(n)) 的,或 f ( n ) = Ω ( g ( n ) ) f(n)=Ω(g(n)) f(n)=Ω(g(n))
  • 大 O表示法和大 Ω 表示法的唯一区别在于不等式的方向而已
  • 采用大 Ω 表示法时,最好找出在函数增值率的所有下限中那个最"紧"(即最大)的下限


复杂度增长率函数曲线
f ( n ) f(n) f(n)值越大, 复杂度增长率越高, 效率越低

时空权衡

  • 增大空间开销可能改善算法的时间开销
  • 可以节省空间,往往需要增大运算时间

相关文章:

[数据结构与算法·C++] 笔记 1.4 算法复杂性分析

1.4 算法复杂性分析 算法的渐进分析 数据规模 n 逐步增大时, f(n)的增长趋势当 n 增大到一定值以后&#xff0c;计算公式中影响最大的就是 n 的幂次最高的项其他的常数项和低幂次项都可以忽略 大O表示法 函数f&#xff0c;g定义域为自然数&#xff0c;值域非负实数集定义: …...

Hive parquet表通过csv文件导入数据

1. background 已建好了 hive parquet 格式的表, 需要从服务器的csv导入数据至该hive表 2. step 提前上传csv至服务器 /path/temp.csv 创建 textfile 格式的中转表(这里使用内部表,方便删除) ,源表名dw_procurement.dwd_tc_comm_plant ,这里中转表加上了csv后缀 CREATE TA…...

C++ 构造函数最佳实践

文章目录 1. 构造函数应该做什么1.1 初始化成员变量1.2 分配资源1.3 遵循 RAII 原则1.4 处理异常情况 2. 构造函数不应该做什么2.1 避免做大量的工作2.2 不要在构造函数中调用虚函数2.3 避免在构造函数中执行复杂的初始化逻辑2.4 避免调用可能抛出异常的代码 3. 构造函数的其他…...

C++——关联式容器(4):set和map

在接触了诸如二叉搜索树、AVL树、红黑树的树形结构之后&#xff0c;我们对树的结构有了大致的了解&#xff0c;现在引入真正的关联式容器。 首先&#xff0c;先明确了关联式容器的概念。我们之前所接触到的如vector、list等容器&#xff0c;我们知道他们实际上都是线性的数据结…...

Spring Mybatis 基本使用 总结

1. 简介 Mybatis库可以简化数据库的操作&#xff0c;专注于sql语句。 2.搭建步骤 2.1 在pom.xml引入mybatis <dependency><groupId>org.mybatis</groupId><artifactId>mybatis</artifactId><version>3.5.11</version> </dep…...

接口幂等性和并发安全的区别?

目录标题 幂等性并发安全总结 接口幂等性和并发安全是两个不同的概念&#xff0c;虽然它们在设计API时都很重要&#xff0c;但侧重点不同。 幂等性 定义&#xff1a;幂等性指的是无论对接口进行多少次相同的操作&#xff0c;结果都是一致的。例如&#xff0c;HTTP的PUT和DELE…...

【记录一下VMware上开虚拟端口映射到公网】

材料 win11 和装在vmware上的ubuntu 步骤一在Ubuntu上配置静态地址&#xff0c;配置如下 vim /etc/netplan/01-network-manager-all.yaml(此文件看系统上对应的是哪个文件&#xff0c;建议先备份)network:version: 2renderer: NetworkManagerethernets:ens33:dhcp4: falseadd…...

半导体器件制造5G智能工厂数字孪生物联平台,推进制造业数字化转型

半导体器件制造行业作为高科技领域的核心驱动力&#xff0c;正积极探索和实践以5G智能工厂数字孪生平台为核心的新型制造模式。这一创新不仅极大地提升了生产效率与质量&#xff0c;更为制造业的未来发展绘制了一幅智能化、网络化的宏伟蓝图。 在半导体器件制造5G智能工厂中&a…...

数据结构之存储位置

p 和 "hello,world"存储在内存哪个区域&#xff1f;( ) (鲁科安全) int main() { char *p "hello,world"; return 0; } p是栈区&#xff0c;”hello,world”是.ro段 一个由C/C编译的程序&#xff0c;会将占用的内存分为几个部分&#xff1a;堆、栈、代…...

传输层协议(TCP和UDP)

目录 一、UDP 1、UDPAPI 2、UDPAPI的使用 二、TCP 1、TCPAPI 2、TCP的相关特性 2.1 确认应答 2.2 超时重传 2.3 连接管理&#xff08;三次握手&#xff0c;四次挥手&#xff09; 2.4 滑动窗口 2.5 流量控制 2.6 拥塞控制 2.7 延时应答 2.8 捎带应答 2.9 面向字节…...

智能仓库|基于springBoot的智能无人仓库管理设计与实现(附项目源码+论文+数据库)

私信或留言即免费送开题报告和任务书&#xff08;可指定任意题目&#xff09; 目录 一、摘要 二、相关技术 三、系统设计 四、数据库设计 五、核心代码 六、论文参考 七、源码获取 一、摘要 互联网发展至今&#xff0c;无论是其理论还是技术都已经成熟&#xf…...

2.《DevOps》系列K8S部署CICD流水线之部署NFS网络存储与K8S创建StorageClass

架构 服务器IP服务名称硬件配置192.168.1.100k8s-master8核、16G、120G192.168.1.101k8s-node18核、16G、120G192.168.1.102k8s-node28核、16G、120G192.168.1.103nfs2核、4G、500G操作系统:Rocky9.3 后续通过K8S部署GitLab、Harbor、Jenkins 一、环境准备 #关闭防火墙开机自…...

【数据仓库】数据仓库常见的数据模型——维度模型

文章部分图参考自&#xff1a;多维数据模型各种类型&#xff08;星型、雪花、星座、交叉连接&#xff09; - 知乎 (zhihu.com) 文章部分文字canla一篇文章搞懂数据仓库&#xff1a;四种常见数据模型&#xff08;维度模型、范式模型等&#xff09;-腾讯云开发者社区-腾讯云 (ten…...

【Kubernetes】常见面试题汇总(三十)

目录 82. Worker 节点宕机&#xff0c;简述 Pods 驱逐流程。 特别说明&#xff1a; 题目 1-68 属于【Kubernetes】的常规概念题&#xff0c;即 “ 汇总&#xff08;一&#xff09;~&#xff08;二十二&#xff09;” 。 题目 69-113 属于【Kubernetes】的生产应用题。 8…...

【Web】PolarCTF2024秋季个人挑战赛wp

EZ_Host 一眼丁真命令注入 payload: ?host127.0.0.1;catf* 序列一下 exp: <?phpclass Polar{public $lt;public $b; } $pnew Polar(); $p->lt"system"; $p->b"tac /f*"; echo serialize($p);payload: xO:5:"Polar":2:{s:2:"…...

职业技能大赛-自动化测试笔记分享-2

一、时间等待处理 1、强制等待(无条件等待) 使用方法:time.sleep(delay) delay的单位为秒,delay设置多少秒页面就会等待多长时间,容易让线程挂掉,使程序抛异常,所以要慎用此方法。 #导入强制等待模块 import time from selenium import webdriverwd = webdriver.Chro…...

LeetCode讲解篇之1343. 大小为 K 且平均值大于等于阈值的子数组数目

文章目录 题目描述题解思路题解代码 题目描述 题解思路 题目让我们求长度为k的子数组并且该子数组的平均值大于threshold&#xff0c;对于这题&#xff0c;我们可以考虑维护一个长度为k的窗口&#xff0c;窗口不断向右滑动&#xff0c;遍历所有长度为k的子数组&#xff0c;我们…...

电子元件制造5G智能工厂物联数字孪生平台,推进制造业数字化转型

5G智能工厂与物联数字孪生平台的融合应用&#xff0c;不仅为电容器制造业注入了新的活力&#xff0c;更为整个制造业的数字化转型树立了新的标杆。电子元件制造过程中&#xff0c;数字孪生平台通过实时监测生产线的各个环节&#xff0c;实现了生产流程的可视化监控。管理人员可…...

【成品论文】2024年华为杯研赛E题25页高质量成品论文(后续会更新

您的点赞收藏是我继续更新的最大动力&#xff01; 一定要点击如下的卡片链接&#xff0c;那是获取资料的入口&#xff01; 点击链接加入【2024华为杯研赛资料汇总】&#xff1a;https://qm.qq.com/q/Mxv2XNWxUc https://qm.qq.com/q/Mxv2XNWxUc 高速公路应急车道紧急启用模型…...

【后端】【语言】【python】python常见操作

文章目录 1. List 操作2. JSON 操作3. Dict 操作 下面是分别演示 list、json、dict 操作 1. List 操作 my_list[] # List 操作示例 my_list [1, 2, 3, "apple", True]# 添加元素 my_list.append("new item") # [1, 2, 3, "apple", True, &qu…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

淘宝扭蛋机小程序系统开发:打造互动性强的购物平台

淘宝扭蛋机小程序系统的开发&#xff0c;旨在打造一个互动性强的购物平台&#xff0c;让用户在购物的同时&#xff0c;能够享受到更多的乐趣和惊喜。 淘宝扭蛋机小程序系统拥有丰富的互动功能。用户可以通过虚拟摇杆操作扭蛋机&#xff0c;实现旋转、抽拉等动作&#xff0c;增…...

windows系统MySQL安装文档

概览&#xff1a;本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容&#xff0c;为学习者提供全面的操作指导。关键要点包括&#xff1a; 解压 &#xff1a;下载完成后解压压缩包&#xff0c;得到MySQL 8.…...

Linux 下 DMA 内存映射浅析

序 系统 I/O 设备驱动程序通常调用其特定子系统的接口为 DMA 分配内存&#xff0c;但最终会调到 DMA 子系统的dma_alloc_coherent()/dma_alloc_attrs() 等接口。 关于 dma_alloc_coherent 接口详细的代码讲解、调用流程&#xff0c;可以参考这篇文章&#xff0c;我觉得写的非常…...