【2024年华为杯研究生数学建模竞赛C题】完整论文与代码
这里写目录标题
- 基于数据驱动下磁性元件的磁芯损耗建模
- 一、问题重述
- 1.1问题背景
- 1.2问题回顾
- 问题分析与模型假设
- 模型建立与求解
基于数据驱动下磁性元件的磁芯损耗建模
一、问题重述
1.1问题背景
在现代电力电子和变压器设计中,磁性元件是确保能量高效传递和系统稳定运行的核心组件之一。磁芯作为磁性元件的主要构成部分,其损耗特性直接影响系统的效率和寿命。磁芯损耗是指当磁芯材料暴露在变化的磁场中时,能量被以热的形式消耗掉的现象。这一现象主要由三部分构成:磁滞损耗、涡流损耗以及剩余损耗。随着技术的进步,电力电子设备对高效率、低损耗的需求日益增强,因此深入研究和理解磁芯损耗的机制对于设计和优化这些设备至关重要。
影响磁芯损耗的因素复杂多样,其中频率、磁通密度和温度被广泛认为是最关键的物理量。然而,在实际应用中,磁芯损耗并不仅仅受到这些物理参数的影响,还与励磁波形的形状、磁芯材料的特性及其工作温度息息相关。传统的损耗计算模型(如斯坦麦茨方程,SE)虽然在特定条件下(如正弦波形)表现良好,但在面对复杂工作环境(如非正弦波形和多种材料)时,往往出现较大误差。因此,修正和扩展这些经典损耗模型,使其能够适应更多实际工况,是学术界和工业界广泛关注的问题之一。
在此背景下,本次研究围绕三个核心问题展开:首先是励磁波形的分类。不同的励磁波形(如正弦波、三角波、梯形波)对磁芯的损耗机制影响各异。准确识别和分类这些波形有助于进一步分析其损耗特性。其次是斯坦麦茨方程的修正。该方程作为经典的磁芯损耗计算模型,在正弦波形下被广泛使用,但忽略了温度对磁芯损耗的影响。由于温度变化在实际应用中难以避免,因此将温度因素引入模型并进行修正可以显著提高损耗预测的准确性。最后是磁芯损耗因素分析,即分析温度、波形、磁芯材料等因素如何单独或协同影响磁芯损耗,并探索最优工作条件以最小化损耗。
1.2问题回顾
问题一:励磁波形分类
励磁波形对磁芯的损耗特性有显著影响,波形的不同形态直接塑造了磁芯内部磁通的动态行为,进而导致磁芯的损耗特性发生变化。因此,准确分类不同的励磁波形对于深入理解磁芯损耗机制以及优化磁芯设计具有重要意义。本问题要求对实验数据中的磁通密度随时间变化的数据进行分析,提取相关特征变量,通过这些变量构建分类模型,识别出三种不同的励磁波形(正弦波、三角波、梯形波)。最终模型的分类结果需填入Excel表格,并对特定样本进行分类统计。
问题二:斯坦麦茨方程(Steinmetz Equation)修正
斯坦麦茨方程是传统磁芯损耗计算模型,但它的适用范围主要局限于正弦波形,对于不同材料和温度变化时会产生较大误差。因此,本问题需要在分析传统斯坦麦茨方程的基础上,针对温度对磁芯损耗的影响进行修正,构造一个适用于不同温度条件下的修正模型。通过对实验数据的分析,拟合出包含温度因素的修正方程,并与原始斯坦麦茨方程进行对比,评估两者在损耗预测方面的效果和误差差异。
问题三:磁芯损耗因素分析
磁芯损耗是衡量磁性元件性能的重要指标之一,温度、励磁波形和磁芯材料是影响损耗的三大主要因素。本问题通过数据分析技术,深入研究这三者对磁芯损耗的独立影响以及它们两两之间的协同作用。通过对实验数据进行回归分析,建立温度、励磁波形和材料的损耗影响模型,探索实现最低损耗的最优工作条件。最终的结果需要给出在不同组合下,磁芯损耗的最小值和相应的条件。
问题四:基于数据驱动的磁芯损耗预测模型
传统的磁芯损耗模型在不同工况和材料下的预测精度往往有限,为了弥补这一不足,本问题旨在通过数据驱动的方式构建一个能够广泛适用于不同材料和工况的高精度磁芯损耗预测模型。利用实验数据,构建回归模型或机器学习模型,分析模型的预测精度和泛化能力,并预测给定样本的磁芯损耗。最终的预测结果需要填入Excel表格,并展示特定样本的预测损耗值。该模型不仅有助于提升磁性元件设计的精度,还为工程实践提供了有力的参考依据。
问题五:磁性元件的最优化条件
磁芯损耗是评价磁性元件性能的重要指标之一,但为了实现磁性元件的整体性能优化,必须综合考虑其他指标,如传输磁能。传输磁能可以通过频率与磁通密度峰值的乘积进行衡量。本问题基于问题四中构建的磁芯损耗预测模型,同时考虑传输磁能,通过优化模型分析温度、频率、波形、磁通密度峰值以及磁芯材料的组合条件,找到在损耗最小和传输磁能最大的工作条件。最终给出该最优条件下的磁芯损耗与传输磁能的具体值。
问题分析与模型假设
模型建立与求解
相关文章:

【2024年华为杯研究生数学建模竞赛C题】完整论文与代码
这里写目录标题 基于数据驱动下磁性元件的磁芯损耗建模一、问题重述1.1问题背景1.2问题回顾 问题分析与模型假设模型建立与求解 基于数据驱动下磁性元件的磁芯损耗建模 一、问题重述 1.1问题背景 在现代电力电子和变压器设计中,磁性元件是确保能量高效传递和系统稳…...

svn回退到以前历史版本修改并上传
svn回退到以前版本,并在以前版本上修改代码后,上传到svn库当中,如下步骤: 3、 以回退到版本号4为例:选中版本号4,右键->Revert to this version,在出现的对话框中 点击yes! 4、 5、...

fiddler抓包07_抓IOS手机请求
课程大纲 前提:电脑和手机连接同一个局域网 (土小帽电脑和手机都连了自己的无线网“tuxiaomao”。) 原理如下: 电脑浏览器抓包时,直接就是本机网络。手机想被电脑Fiddler抓包,就要把Fiddler变成手机和网络…...

Windows系统及Ubuntu系统安装Java
Java语言简介 Java是一种高级编程语言,Java语言的创始可以追溯到1990年代初,当时任职于Sun Microsystems(后来被甲骨文公司收购)的詹姆斯高斯林(James Gosling)等人开始开发一种名为“Oak”(名字来源于詹姆…...

uni-data-select 使用 localdata 传入数据出现 不回显 | 下拉显示错误的 解决方法
目录 1. 问题所示2. 正确Demo3. 下拉显示错误(Bug复现)4. 下拉不回显(Bug复现)1. 问题所示 uni-app的下拉框uni-data-select 使用 localdata 传入数据 主要总结正确的Demo以及复现一些Bug 数据不回显数据不显示下拉选项2. 正确Demo 详细的基本知识推荐阅读:uni-app中的…...

图解 TCP 四次挥手|深度解析|为什么是四次|为什么要等2MSL
写在前面 今天我们来图解一下TCP的四次挥手、深度解析为什么是四次? 上一片文章我们已经介绍了TCP的三次握手 解析四次挥手 数据传输完毕之后,通信的双方都可释放连接。现在客户端A和服务端B都处于ESTABLISHED状态。 第一次挥手 客户端A的应用进…...

DevExpress中文教程:如何将WinForms数据网格连接到ASP. NET Core WebAPI服务?
日前DevExpress官方发布了DevExpress WinForms的后续版本——将.NET桌面客户端连接到安全后端Web API服务(EF Core with OData),在本文中我们将进一步演示如何使用一个更简单的服务来设置DevExpress WinForms数据网格。 P.S:DevExpress WinForms拥有180…...

SpringBoot3核心特性-核心原理
目录 传送门前言一、事件和监听器1、生命周期监听2、事件触发时机 二、自动配置原理1、入门理解1.1、自动配置流程1.2、SPI机制1.3、功能开关 2、进阶理解2.1、 SpringBootApplication2.2、 完整启动加载流程 三、自定义starter1、业务代码2、基本抽取3、使用EnableXxx机制4、完…...

Linux:RPM软件包管理以及yum软件包仓库
挂载光驱设备 RPM软件包管理 RPM软件包简介 区分软件名和软件包名 软件名:firefox 软件包名:firefox-52.7.0-1.el7.centos.x86_64.rpm 查询软件信息 查询软件(参数为软件名) ]# rpm -qa #当前系统中所有已安装的软件包 ]# r…...

pod介绍与配置
1、pod概念介绍 Pod 是 kubernetes 基本调度单位。每个 Pod 中可以运 行一个或多个容器,共享 Pod 的文件系统、IP 和网络等资源,每个 Pod 只有一个 IP。 2、使用 yaml或json 文件创建 Pod 声明式文件方式创建 Pod,支持 yaml 和 json 1&…...

【Taro】初识 Taro
笔记来源:编程导航。 概述 Taro 官方文档:https://taro-docs.jd.com/docs/ (跨端开发框架) Taro 官方框架兼容的组件库: taro-ui:https://taro-ui.jd.com/#/ (最推荐,兼容性最好&…...

【设计模式-备忘录】
备忘录模式(Memento Pattern)是一种行为型设计模式,用于保存对象的内部状态,以便在将来某个时间可以恢复到该状态,而不暴露对象的内部实现细节。备忘录模式特别适合在需要支持撤销(Undo)操作的应…...

【数据结构】排序算法系列——快速排序(附源码+图解)
快速排序 接下来我们将要介绍的是排序中最为重要的算法之一——快速排序。 快速排序(英语:Quicksort),又称分区交换排序(partition-exchange sort),最早由东尼霍尔提出。快速排序通常明显比其…...

Arthas thread(查看当前JVM的线程堆栈信息)
文章目录 二、命令列表2.1 jvm相关命令2.1.2 thread(查看当前JVM的线程堆栈信息)举例1:展示[数字]线程的运行堆栈,命令:thread 线程ID举例2:找出当前阻塞其他线程的线程 二、命令列表 2.1 jvm相关命令 2.…...

Tomcat_WebApp
Tomcat的目录的介绍 /bin: 这个目录包含启动和关闭 Tomcat 的脚本。 startup.bat / startup.sh:用于启动 Tomcat(.bat 文件是 Windows 系统用的,.sh 文件是 Linux/Unix 系统用的)。shutdown.bat / shutdown.sh…...
代码随想录算法训练营Day10
150. 逆波兰表达式求值 力扣题目链接;. - 力扣(LeetCode) Collection——Deque——LInkedList类 class Solution {public int evalRPN(String[] tokens) {Deque<Integer> myquenew LinkedList<>();for(String a:tokens){if(a.…...
十个服务器中毒的常见特征及其检测方法
服务器作为企业的核心资源,其安全性至关重要。一旦服务器被病毒入侵,不仅会影响系统的正常运行,还可能导致数据泄露等严重后果。以下是十种常见的服务器中毒特征及其检测方法。 1. 系统性能下降 病毒常常占用大量的CPU和内存资源࿰…...

LeetCode 每周算法 6(图论、回溯)
LeetCode 每周算法 6(图论、回溯) 图论算法: class Solution: def dfs(self, grid: List[List[str]], r: int, c: int) -> None: """ 深度优先搜索函数,用于遍历并标记与当前位置(r, c)相连的所有陆地&…...

Selenium元素定位:深入探索与实践
目录 一、引言 二、Selenium元素定位基础 1. WebDriver与元素定位 2. 定位策略概览 三、ID定位 1. 特点与优势 2. 示例代码 四、Class Name定位 1. 特点与限制 2. 示例代码 五、XPath定位 1. 特点与优势 2. 示例代码 3. XPath高级用法 六、CSS Selector定位 1.…...
前端开发——(1)使用vercel进行网页开发
前端开发——(1)使用Vercel进行网页开发 在现代前端开发中,选择一个高效的部署平台至关重要。Vercel 提供了快速、简便的部署方式,特别适合静态网站和 Next.js 应用。本文将带你逐步了解如何使用 Vercel 部署并运行你的网页项目。…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...

Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...
Python Einops库:深度学习中的张量操作革命
Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...
MySQL 部分重点知识篇
一、数据库对象 1. 主键 定义 :主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 :确保数据的完整性,便于数据的查询和管理。 示例 :在学生信息表中,学号可以作为主键ÿ…...

LabVIEW双光子成像系统技术
双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制,展现出显著的技术优势: 深层组织穿透能力:适用于活体组织深度成像 高分辨率观测性能:满足微观结构的精细研究需求 低光毒性特点:减少对样本的损伤…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...
在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南
在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南 背景介绍完整操作步骤1. 创建Docker容器环境2. 验证GUI显示功能3. 安装ROS Noetic4. 配置环境变量5. 创建ROS节点(小球运动模拟)6. 配置RVIZ默认视图7. 创建启动脚本8. 运行可视化系统效果展示与交互技术解析ROS节点通…...

负载均衡器》》LVS、Nginx、HAproxy 区别
虚拟主机 先4,后7...

数据结构:泰勒展开式:霍纳法则(Horner‘s Rule)
目录 🔍 若用递归计算每一项,会发生什么? Horners Rule(霍纳法则) 第一步:我们从最原始的泰勒公式出发 第二步:从形式上重新观察展开式 🌟 第三步:引出霍纳法则&…...