当前位置: 首页 > news >正文

《深度学习》—— 卷积神经网络(CNN)的简单介绍和工作原理

文章目录

  • 一、卷积神经网络的简单介绍
  • 二、工作原理(还未写完)
    • 1.输入层
    • 2.卷积层
    • 3.池化层
    • 4.全连接层
    • 5.输出层

一、卷积神经网络的简单介绍

  • 基本概念
    • 定义:卷积神经网络是一种深度学习模型,通常用于图像、视频、语音等信号数据的分类和识别任务。其核心思想是通过卷积、池化等操作来提取特征,将输入数据映射到一个高维特征空间中,再通过全连接层对特征进行分类或回归。
    • 提出者:Yann LeCun、Wei Zhang、Alexander Waibel等。
    • 提出时间:卷积神经网络的研究始于二十世纪80至90年代,最早由日本学者福岛邦彦提出的neocognitron模型启发了卷积神经网络的发展。第一个卷积神经网络是1987年由Alexander Waibel等提出的时间延迟网络(Time Delay Neural Network, TDNN)。
  • 主要特点
    • 权值共享:在卷积层中,同一个卷积核在不同位置上的权值是相同的,这样可以大大减少模型参数,提高模型泛化能力。
    • 局部连接:在卷积层中,每个卷积核只与输入数据的一部分进行卷积运算,而不是与整个输入数据进行卷积运算,这样可以提取出局部特征,增强模型的特征提取能力。
    • 平移不变性:卷积神经网络具有对输入数据平移不变性的特性,即对于输入数据的微小变化,模型能够保持稳定的输出。

二、工作原理(还未写完)

  • 卷积神经网络主要由输入层卷积层池化层全连接层输出层组成。这些层通过特定的运算和连接方式,共同实现了对输入数据的特征提取、降维、分类或回归等任务。

1.输入层

  • 输入层是CNN的起点,负责接收原始数据作为输入。对于图像处理任务,输入层通常是一张图片,具体表现为一个多维矩阵。例如,一张28x28的灰度图像可以表示为一个28x28的二维矩阵,而彩色图像则会有三个通道(RGB),即输入的数据会是一个28x28x3的三维矩阵。

2.卷积层

  • 卷积层是CNN的核心部分,通过卷积操作提取输入数据的局部特征。卷积操作通过输入图像与卷积核(Convolution Kernel)的点积计算完成,卷积核在输入图像上滑动,每滑动一次都会计算图像局部区域与卷积核的点积结果,生成一个新的二维矩阵,即特征图(Feature Map)。
    卷积核的大小、步长和填充方式等参数会影响特征图的尺寸和特征提取的效果。卷积核的数量决定了生成特征图的数量,多个卷积核可以并行工作以提取不同类型的特征。
    在这里插入图片描述

3.池化层

  • 池化层又称为下采样层,用于在卷积操作后提取特征图中最具代表性的特征,帮助减少不必要的特征,从而减小过拟合的风险和降低数据的维度。常见的池化操作包括最大池化和平均池化。
    最大池化在每个局部区域(如2x2)中选择最大值作为该区域的代表,而平均池化则取该区域的平均值。池化操作不仅简化了特征图,还引入了一定的平移不变性,使得模型对输入图像的微小变化具有一定的鲁棒性。

4.全连接层

  • 全连接层通常位于CNN的末端,负责将前面层提取的特征综合起来,用于分类或回归等任务。全连接层的每个神经元都与前一层的所有神经元相连,通过加权求和和激活函数等操作,将特征图中的信息整合为更高层次的特征表示。

5.输出层

  • 输出层是CNN的最后一层,负责输出最终的分类结果或回归值。在分类任务中,输出层通常使用softmax函数将全连接层的输出转换为概率分布,表示输入数据属于各个类别的概率。

相关文章:

《深度学习》—— 卷积神经网络(CNN)的简单介绍和工作原理

文章目录 一、卷积神经网络的简单介绍二、工作原理(还未写完)1.输入层2.卷积层3.池化层4.全连接层5.输出层 一、卷积神经网络的简单介绍 基本概念 定义:卷积神经网络是一种深度学习模型,通常用于图像、视频、语音等信号数据的分类和识别任务。其核心思想…...

数据结构:线性表

1、线性表概述 1.1线性表的定义 线性表(list):零个或多个数据元素的有限序列。 简单地来说,我们可以用下面这张图来描述一个线性表: 1.2 线性表的存储结构 1.2.1顺序存储结构——顺序表 顺序表是将数据全部存储到…...

Ansible PlayBook实践案例

一、PlayBook介绍 1.什么是playbook playbook 顾名思义,即剧本,现实生活中演员按照剧本表演,在 ansible 中,由被控计算机表演,进行安装,部署应用,提供对外的服务等,以及组织计算机处理各种各样…...

Tomcat后台弱口令部署war包

1.环境搭建 cd /vulhub/tomcat/tomcat8 docker-compose up -d 一键启动容器 2.访问靶场 点击Manager App tomcat8的默认用户名和密码都是tomcat进行登录 3.制作war包 先写一个js的一句话木马 然后压缩成zip压缩包 最后修改后缀名为war 4.在网站后台上传war文件 上传war文件…...

胤娲科技:DeepMind的FermiNet——带你穿越“薛定谔的早餐桌”

当AI遇上量子迷雾,FermiNet成了你的“量子导航仪” 想象一下,你早晨醒来,发现家里的厨房变成了薛定谔的实验室,你的咖啡杯和吐司同时处于“存在与不存在”的叠加态。 你伸手去拿,却不确定会不会摸到冰冷的空气或是热腾…...

迅为iTOP-STM32MP157开发板板载4G接口(选配)_千兆以太网_WIFI蓝牙模块_HDMI_CAN_RS485_LVDS接口等

迅为ITOP-STM32MP157是基于ST的STM32MP157芯片开发的一款开发平台。在STM32MP157开发平台上,我们也做了比较多的创新,其中重要的一点就是,iTOP-STM32MP157核心板电源管理采用ST全新配套研制的PMIC电源管理芯片STPMU1A。为整个系统的稳定运行提…...

Android Choreographer 监控应用 FPS

Choreographer 是 Android 提供的一个强大的工具类,用于协调动画、绘制和视图更新的时间。它的主要作用是协调应用的绘制过程,以确保流畅的用户体验。Choreographer 也可以帮助我们获取帧时间信息,从而为性能监测和优化提供重要的数据支持。 …...

关于 mybatis-plus-boot-starter 与 mybatis-spring-boot-starter 的错误

不是知道你是否 出现过这样的错误 org.apache.ibatis.binding.BindingException: Invalid bound statement (not found): 经过各种度娘,无非就是让你检查三种情况 情况一:mapper.xml没有按照传统的maven架构进行放置 情况二:mybatis的配置信…...

NLP 文本分类任务核心梳理

解决思路 分解为多个独立二分类任务将多标签分类转化为多分类问题更换 loss 直接由模型进行多标签分类 数据稀疏问题 标注更多数据,核心解决方案: 自己构造训练样本 数据增强,如使用 chatGPT 来构造数据更换模型 减少数据需求增加规则弥补…...

k8s中pod的创建过程和阶段状态

管理k8s集群 kubectl k8s中有两种用户 一种是登录的 一种是/sbin/nologin linux可以用密码登录,也可以用证书登录 k8s只能用证书登录 谁拿到这个证书,谁就可以管理集群 在k8s中,所有节点都被网络组件calico设置了路由和通信 所以pod的ip是可以…...

NSSCTF刷题篇1

js类型 [SWPUCTF 2022 新生赛]js_sign 这是一道js信息泄露的题目直接查看源码,有一个main.js文件点击之后,有一串数字和一段base64编码,解开base64编码得到这个编码为敲击码 解码在线网站:Tap Code - 许愿星 (wishingstarmoye.…...

[数据集][目标检测]棉花叶子病害检测数据集VOC+YOLO格式977张22类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):977 标注数量(xml文件个数):977 标注数量(txt文件个数):977 标注类别…...

产品经理面试整理-常见面试问题

以下是一些常见的产品经理面试问题及其解答思路。这些问题涵盖了产品管理的各个方面,包括战略、执行、数据分析、用户体验、跨团队合作等。在准备这些问题时,使用结构化的回答方式(如STAR法)能够帮助你更好地表达你的观点和经验。 1. 常见产品经理面试问题 1.1 你如何定义用…...

数据库(选择题)

基本概念 数据库(DB):长期存储在计算机内的、有组织的、可共享的数据集合。 数据库管理系统(DBMS):它是数据库的机构,是一个系统软件,负责数据库中的数据组织、数据操纵、数据维护…...

粒子向上持续瀑布动画效果(直接粘贴到记事本改html即可)

代码&#xff1a; 根据个人喜好修改即可 <!DOCTYPE html> <html lang"zh"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>宽粒子向上…...

卷积神经网络(CNN):深度学习中的视觉奇迹

目录 一、什么是卷积神经网络&#xff1f; 二、CNN的核心组件 1. 卷积层&#xff08;Convolutional Layer&#xff09; 2. 激活函数&#xff08;Activation Function&#xff09; 3. 池化层&#xff08;Pooling Layer&#xff09; 4. 全连接层&#xff08;Fully Connected…...

Vue:加载本地视频

目录 封装视频弹框调用视频组件 封装视频弹框 <template><el-dialog class"videoBox" :title"title" :visible.sync"visible" width"40%" :before-close"handleOnClose" :close-on-click-modal"false" …...

论文阅读:A Generalization of Transformer Networks to Graphs

论文阅读&#xff1a;A Generalization of Transformer Networks to Graphs 论文地址1 摘要2 贡献Graph TransformerOn Graph Sparsity&#xff08;图稀疏&#xff09;On Positional Encodings&#xff08;位置编码&#xff09;3 Graph Transformer Architecture&#xff08;架…...

中国计量大学《2022年801+2022年819自动控制原理真题》 (完整版)

本文内容&#xff0c;全部选自自动化考研联盟的&#xff1a;《25届中国计量大学801819自控考研资料》的真题篇。后续会持续更新更多学校&#xff0c;更多年份的真题&#xff0c;记得关注哦~ 目录 2022年801真题 2022年819真题 Part1&#xff1a;2022年完整版真题 2022年801…...

创客匠人运营课堂|增强用户的参与度和忠诚度,这一个工具就能实现!

活动投票是通过营销活动来提升用户粘性及平台裂变效果的工具。可以让活动得到更好的传播&#xff0c;平台品牌得到更大的曝光。 使用场景 活动投票是一种互动营销手段&#xff0c;适用于各种活动场景&#xff0c;具有增强用户的参与度和忠诚度&#xff0c;提高活动的透明度和公…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

免费数学几何作图web平台

光锐软件免费数学工具&#xff0c;maths,数学制图&#xff0c;数学作图&#xff0c;几何作图&#xff0c;几何&#xff0c;AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...

宇树科技,改名了!

提到国内具身智能和机器人领域的代表企业&#xff0c;那宇树科技&#xff08;Unitree&#xff09;必须名列其榜。 最近&#xff0c;宇树科技的一项新变动消息在业界引发了不少关注和讨论&#xff0c;即&#xff1a; 宇树向其合作伙伴发布了一封公司名称变更函称&#xff0c;因…...

Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合

作者&#xff1a;来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布&#xff0c;Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明&#xff0c;Elastic 作为 …...

[USACO23FEB] Bakery S

题目描述 Bessie 开了一家面包店! 在她的面包店里&#xff0c;Bessie 有一个烤箱&#xff0c;可以在 t C t_C tC​ 的时间内生产一块饼干或在 t M t_M tM​ 单位时间内生产一块松糕。 ( 1 ≤ t C , t M ≤ 10 9 ) (1 \le t_C,t_M \le 10^9) (1≤tC​,tM​≤109)。由于空间…...

js 设置3秒后执行

如何在JavaScript中延迟3秒执行操作 在JavaScript中&#xff0c;要设置一个操作在指定延迟后&#xff08;例如3秒&#xff09;执行&#xff0c;可以使用 setTimeout 函数。setTimeout 是JavaScript的核心计时器方法&#xff0c;它接受两个参数&#xff1a; 要执行的函数&…...