《深度学习》—— 卷积神经网络(CNN)的简单介绍和工作原理
文章目录
- 一、卷积神经网络的简单介绍
- 二、工作原理(还未写完)
- 1.输入层
- 2.卷积层
- 3.池化层
- 4.全连接层
- 5.输出层
一、卷积神经网络的简单介绍
- 基本概念
- 定义:卷积神经网络是一种深度学习模型,通常用于图像、视频、语音等信号数据的分类和识别任务。其核心思想是通过卷积、池化等操作来提取特征,将输入数据映射到一个高维特征空间中,再通过全连接层对特征进行分类或回归。
- 提出者:Yann LeCun、Wei Zhang、Alexander Waibel等。
- 提出时间:卷积神经网络的研究始于二十世纪80至90年代,最早由日本学者福岛邦彦提出的neocognitron模型启发了卷积神经网络的发展。第一个卷积神经网络是1987年由Alexander Waibel等提出的时间延迟网络(Time Delay Neural Network, TDNN)。
- 主要特点
- 权值共享:在卷积层中,同一个卷积核在不同位置上的权值是相同的,这样可以大大减少模型参数,提高模型泛化能力。
- 局部连接:在卷积层中,每个卷积核只与输入数据的一部分进行卷积运算,而不是与整个输入数据进行卷积运算,这样可以提取出局部特征,增强模型的特征提取能力。
- 平移不变性:卷积神经网络具有对输入数据平移不变性的特性,即对于输入数据的微小变化,模型能够保持稳定的输出。
二、工作原理(还未写完)
- 卷积神经网络主要由输入层、卷积层、池化层、全连接层和输出层组成。这些层通过特定的运算和连接方式,共同实现了对输入数据的特征提取、降维、分类或回归等任务。
1.输入层
- 输入层是CNN的起点,负责接收原始数据作为输入。对于图像处理任务,输入层通常是一张图片,具体表现为一个多维矩阵。例如,一张28x28的灰度图像可以表示为一个28x28的二维矩阵,而彩色图像则会有三个通道(RGB),即输入的数据会是一个28x28x3的三维矩阵。
2.卷积层
- 卷积层是CNN的核心部分,通过卷积操作提取输入数据的局部特征。卷积操作通过输入图像与卷积核(Convolution Kernel)的点积计算完成,卷积核在输入图像上滑动,每滑动一次都会计算图像局部区域与卷积核的点积结果,生成一个新的二维矩阵,即特征图(Feature Map)。
卷积核的大小、步长和填充方式等参数会影响特征图的尺寸和特征提取的效果。卷积核的数量决定了生成特征图的数量,多个卷积核可以并行工作以提取不同类型的特征。
3.池化层
- 池化层又称为下采样层,用于在卷积操作后提取特征图中最具代表性的特征,帮助减少不必要的特征,从而减小过拟合的风险和降低数据的维度。常见的池化操作包括最大池化和平均池化。
最大池化在每个局部区域(如2x2)中选择最大值作为该区域的代表,而平均池化则取该区域的平均值。池化操作不仅简化了特征图,还引入了一定的平移不变性,使得模型对输入图像的微小变化具有一定的鲁棒性。
4.全连接层
- 全连接层通常位于CNN的末端,负责将前面层提取的特征综合起来,用于分类或回归等任务。全连接层的每个神经元都与前一层的所有神经元相连,通过加权求和和激活函数等操作,将特征图中的信息整合为更高层次的特征表示。
5.输出层
- 输出层是CNN的最后一层,负责输出最终的分类结果或回归值。在分类任务中,输出层通常使用softmax函数将全连接层的输出转换为概率分布,表示输入数据属于各个类别的概率。
相关文章:

《深度学习》—— 卷积神经网络(CNN)的简单介绍和工作原理
文章目录 一、卷积神经网络的简单介绍二、工作原理(还未写完)1.输入层2.卷积层3.池化层4.全连接层5.输出层 一、卷积神经网络的简单介绍 基本概念 定义:卷积神经网络是一种深度学习模型,通常用于图像、视频、语音等信号数据的分类和识别任务。其核心思想…...

数据结构:线性表
1、线性表概述 1.1线性表的定义 线性表(list):零个或多个数据元素的有限序列。 简单地来说,我们可以用下面这张图来描述一个线性表: 1.2 线性表的存储结构 1.2.1顺序存储结构——顺序表 顺序表是将数据全部存储到…...

Ansible PlayBook实践案例
一、PlayBook介绍 1.什么是playbook playbook 顾名思义,即剧本,现实生活中演员按照剧本表演,在 ansible 中,由被控计算机表演,进行安装,部署应用,提供对外的服务等,以及组织计算机处理各种各样…...

Tomcat后台弱口令部署war包
1.环境搭建 cd /vulhub/tomcat/tomcat8 docker-compose up -d 一键启动容器 2.访问靶场 点击Manager App tomcat8的默认用户名和密码都是tomcat进行登录 3.制作war包 先写一个js的一句话木马 然后压缩成zip压缩包 最后修改后缀名为war 4.在网站后台上传war文件 上传war文件…...

胤娲科技:DeepMind的FermiNet——带你穿越“薛定谔的早餐桌”
当AI遇上量子迷雾,FermiNet成了你的“量子导航仪” 想象一下,你早晨醒来,发现家里的厨房变成了薛定谔的实验室,你的咖啡杯和吐司同时处于“存在与不存在”的叠加态。 你伸手去拿,却不确定会不会摸到冰冷的空气或是热腾…...

迅为iTOP-STM32MP157开发板板载4G接口(选配)_千兆以太网_WIFI蓝牙模块_HDMI_CAN_RS485_LVDS接口等
迅为ITOP-STM32MP157是基于ST的STM32MP157芯片开发的一款开发平台。在STM32MP157开发平台上,我们也做了比较多的创新,其中重要的一点就是,iTOP-STM32MP157核心板电源管理采用ST全新配套研制的PMIC电源管理芯片STPMU1A。为整个系统的稳定运行提…...

Android Choreographer 监控应用 FPS
Choreographer 是 Android 提供的一个强大的工具类,用于协调动画、绘制和视图更新的时间。它的主要作用是协调应用的绘制过程,以确保流畅的用户体验。Choreographer 也可以帮助我们获取帧时间信息,从而为性能监测和优化提供重要的数据支持。 …...

关于 mybatis-plus-boot-starter 与 mybatis-spring-boot-starter 的错误
不是知道你是否 出现过这样的错误 org.apache.ibatis.binding.BindingException: Invalid bound statement (not found): 经过各种度娘,无非就是让你检查三种情况 情况一:mapper.xml没有按照传统的maven架构进行放置 情况二:mybatis的配置信…...

NLP 文本分类任务核心梳理
解决思路 分解为多个独立二分类任务将多标签分类转化为多分类问题更换 loss 直接由模型进行多标签分类 数据稀疏问题 标注更多数据,核心解决方案: 自己构造训练样本 数据增强,如使用 chatGPT 来构造数据更换模型 减少数据需求增加规则弥补…...

k8s中pod的创建过程和阶段状态
管理k8s集群 kubectl k8s中有两种用户 一种是登录的 一种是/sbin/nologin linux可以用密码登录,也可以用证书登录 k8s只能用证书登录 谁拿到这个证书,谁就可以管理集群 在k8s中,所有节点都被网络组件calico设置了路由和通信 所以pod的ip是可以…...

NSSCTF刷题篇1
js类型 [SWPUCTF 2022 新生赛]js_sign 这是一道js信息泄露的题目直接查看源码,有一个main.js文件点击之后,有一串数字和一段base64编码,解开base64编码得到这个编码为敲击码 解码在线网站:Tap Code - 许愿星 (wishingstarmoye.…...

[数据集][目标检测]棉花叶子病害检测数据集VOC+YOLO格式977张22类别
数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):977 标注数量(xml文件个数):977 标注数量(txt文件个数):977 标注类别…...

产品经理面试整理-常见面试问题
以下是一些常见的产品经理面试问题及其解答思路。这些问题涵盖了产品管理的各个方面,包括战略、执行、数据分析、用户体验、跨团队合作等。在准备这些问题时,使用结构化的回答方式(如STAR法)能够帮助你更好地表达你的观点和经验。 1. 常见产品经理面试问题 1.1 你如何定义用…...

数据库(选择题)
基本概念 数据库(DB):长期存储在计算机内的、有组织的、可共享的数据集合。 数据库管理系统(DBMS):它是数据库的机构,是一个系统软件,负责数据库中的数据组织、数据操纵、数据维护…...

粒子向上持续瀑布动画效果(直接粘贴到记事本改html即可)
代码: 根据个人喜好修改即可 <!DOCTYPE html> <html lang"zh"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>宽粒子向上…...

卷积神经网络(CNN):深度学习中的视觉奇迹
目录 一、什么是卷积神经网络? 二、CNN的核心组件 1. 卷积层(Convolutional Layer) 2. 激活函数(Activation Function) 3. 池化层(Pooling Layer) 4. 全连接层(Fully Connected…...

Vue:加载本地视频
目录 封装视频弹框调用视频组件 封装视频弹框 <template><el-dialog class"videoBox" :title"title" :visible.sync"visible" width"40%" :before-close"handleOnClose" :close-on-click-modal"false" …...

论文阅读:A Generalization of Transformer Networks to Graphs
论文阅读:A Generalization of Transformer Networks to Graphs 论文地址1 摘要2 贡献Graph TransformerOn Graph Sparsity(图稀疏)On Positional Encodings(位置编码)3 Graph Transformer Architecture(架…...

中国计量大学《2022年801+2022年819自动控制原理真题》 (完整版)
本文内容,全部选自自动化考研联盟的:《25届中国计量大学801819自控考研资料》的真题篇。后续会持续更新更多学校,更多年份的真题,记得关注哦~ 目录 2022年801真题 2022年819真题 Part1:2022年完整版真题 2022年801…...

创客匠人运营课堂|增强用户的参与度和忠诚度,这一个工具就能实现!
活动投票是通过营销活动来提升用户粘性及平台裂变效果的工具。可以让活动得到更好的传播,平台品牌得到更大的曝光。 使用场景 活动投票是一种互动营销手段,适用于各种活动场景,具有增强用户的参与度和忠诚度,提高活动的透明度和公…...

k8s 微服务 ingress-nginx 金丝雀发布
目录 一 什么是微服务 二 微服务的类型 三 ipvs模式 3.1 ipvs模式配置方式 四 微服务类型详解 4.1 clusterip 4.2 ClusterIP中的特殊模式headless 4.3 nodeport 4.4 loadbalancer 4.5 metalLB 4.6 externalname 五 Ingress-nginx 5.1 ingress-nginx功能 5.2 部署…...

Elasticsearch不停机切换(上云)方案
如何给飞行中的飞机换引擎? 背景 业务背景 略 技术背景 线下集群40个索引左右,总数据量不大,不到100G因为ES承担的业务鉴权业务,所以不能接受停机割接 还有就是ES中数据来自各个业务方,推送的时机不定,也没有完备的重推机制&…...

归纳一下Invoke,beginInvoke,还有InvokeRequire
1.在WinForms中的Invoke和BeginInvoke WinForms是一个单线程的UI框架。在多线程的环境下操作UI控件时。需要使用Invoke和BeginInvoke跨线程调起UI线程 这两的区别如下Invoke:同步调用,当前代码不在UI线程上执行时,会卡住当前线程࿰…...

Prompt最佳实践|指定输出的长度
在OpenAI的官方文档中已经提供了[Prompt Enginerring]的最佳实践,目的就是帮助用户更好的使用ChatGPT 编写优秀的提示词我一共总结了9个分类,本文讲解第6个分类:指定输出长度 提供更多的细节要求模型扮演角色使用分隔符指定任务步骤提供样例…...

离散制造 vs 流程制造:锚定精准制造未来,从装配线到化学反应,实时数据集成在制造业案例中的多维应用
使用 TapData,化繁为简,摆脱手动搭建、维护数据管道的诸多烦扰,轻量替代 OGG, Kettle 等同步工具,以及基于 Kafka 的 ETL 解决方案,「CDC 流处理 数据集成」组合拳,加速仓内数据流转,帮助企业…...

教你一招:在微信小程序中为用户上传的图片添加时间水印
在微信小程序开发过程中,我们常常需要在图片上添加水印,以保护版权或增加个性化元素。本文将为大家介绍如何在微信小程序中为图片添加时间水印,让你的小程序更具特色。 实现步骤: 1. 创建页面结构 在pages目录下创建一个名为upl…...

MySQL --基本查询(上)
文章目录 1.Create1.1单行数据全列插入1.2多行数据指定列插入1.3插入否则更新1.4替换 2.Retrieve2.1 select列2.1.1全列查询2.1.2指定列查询2.1.3查询字段为表达式2.1.4 为查询结果指定别名2.1.5结果去重 2.2where 条件2.2.1英语不及格的同学及英语成绩 ( < 60 )2.2.2语文成…...

mysql学习教程,从入门到精通,SQL 删除数据(DELETE 语句)(19)
1、SQL 删除数据(DELETE 语句) 在SQL中,TRUNCATE TABLE 语句用于删除表中的所有行,但不删除表本身。这个操作通常比使用 DELETE 语句删除所有行要快,因为它不记录每一行的删除操作到事务日志中,而是直接重…...

RoguelikeGenerator Pro - Procedural Level Generator
这是怎么一回事? Roguelike Generator Pro:简单与力量的结合。使用GameObjects、Tilemaps或自定义解决方案轻松制作3D/2D/2.5D关卡。享受内置功能,如碰撞处理、高度变化、基本控制器和子随机化器,所有这些都由Drunkard Wlak程序生成算法提供支持。 我该如何使用它? 简单:…...

反病毒技术和反病毒软件(网络安全小知识)
一、反病毒技术的难点 病毒变异与多态性:病毒开发者不断利用新技术和漏洞,创造出新的病毒变种和多态病毒。这些病毒能够自我变异,从而避开传统的基于特征码的检测方法,使得反病毒软件难以识别和清除。 未知病毒检测:在…...