Java设计模式—面向对象设计原则(五) ----->迪米特法则(DP) (完整详解,附有代码+案例)
文章目录
- 3.5 迪米特法则(DP)
- 3.5.1 概述
- 3.5.2 案例
3.5 迪米特法则(DP)
迪米特法则:Demeter Principle,简称DP
3.5.1 概述
只和你的直接朋友交谈,不跟“陌生人”说话(Talk only to your immediate friends and not to strangers)。
其含义是:如果两个软件实体无须直接通信,那么就不应当发生直接的相互调用,可以通过第三方转发该调用。其目的是降低类之间的耦合度,提高模块的相对独立性。(如,学生通过中介租房,而不是直接联系房东)
迪米特法则中的“朋友”是指:当前对象本身、当前对象的成员对象、当前对象所创建的对象(即 在当前对象的方法中创建其他对象)、当前对象的方法参数(即 当前对象方法的形参是一个对象类型,调用改方法需要传入一个实际的对象)等,这些对象同当前对象存在关联、依赖、聚合或组合关系,可以直接访问这些对象的方法。
3.5.2 案例
下面看一个例子来理解迪米特法则
【例】明星与经纪人的关系实例
明星由于全身心投入艺术,所以许多日常事务由经纪人负责处理,如和粉丝的见面会,和媒体公司的业务洽淡等。这里的经纪人是明星的朋友,而粉丝和媒体公司是明星的陌生人,降低了明星和粉丝以及明星和公司的耦合度,所以适合使用迪米特法则。
public class Fans {private String name;// 有参构造public Fans(String name) {this.name = name;}public String getName() {return name;}
}
=========================================================public class Star {private String name;// 带参构造public Star(String name) {this.name = name;}public String getName() { return name;}
}
==========================================================public class Company {private String name;// 有参构造public Company(String name) {this.name = name;}public String getName() {return name;}
}
===========================================================// 经纪人类,相当于第三方
public class Agent {//将粉丝、明星、公司聚合起来private Star star;private Fans fans;private Company company;public void setStar(Star star) {this.star = star; }public void setFans(Fans fans) { this.fans = fans;}public void setCompany(Company company) {this.company = company;}public void meeting(){System.out.println(fans.getName()+"与明星"+star.getName()+"见面了");}public void business(){System.out.println(company.getName()+"与明星"+star.getName()+"洽谈业务");}
}
===================================================
public class ClientTest {public static void main(String[] args) {// 创建经纪人类Agent agent = new Agent();// 创建明星类Star star = new Star("詹姆斯");agent.setStar(star);// 创建粉丝类Fans fans = new Fans("球迷");agent.setFans(fans);//创建公司类Company company = new Company("李宁公司");agent.setCompany(company);//和粉丝见面agent.meeting();//和公司洽谈业务agent.business();}
}
相关文章:

Java设计模式—面向对象设计原则(五) ----->迪米特法则(DP) (完整详解,附有代码+案例)
文章目录 3.5 迪米特法则(DP)3.5.1 概述3.5.2 案例 3.5 迪米特法则(DP) 迪米特法则:Demeter Principle,简称DP 3.5.1 概述 只和你的直接朋友交谈,不跟“陌生人”说话(Talk only to your immediate friends and not to stranger…...

docker多阶段镜像制作,比如nginx镜像,编译+制作
镜像制作, nginx的源码包 把nginx源码拷贝到容器内 编译要用到gcc make , 以及扩展工具 pcre openssl # "pcre" perl compatibal regulaer expression 刚开始,可以两个终端, 一个手工操作(编译安装、拷贝、环境变量等)…...

大语言模型量化方法GPTQ、GGUF、AWQ详细原理
大语言模型量化的目的是减少模型的计算资源需求和存储占用,同时尽量保持模型的性能。以下是几种常见的量化方法的原理; 1. GPTQ (Gradient-based Post-training Quantization) GPTQ 是一种基于梯度的后训练量化方法,主要目的是在减少浮点计…...

《 C++ 修炼全景指南:十 》自平衡的艺术:深入了解 AVL 树的核心原理与实现
摘要 本文深入探讨了 AVL 树(自平衡二叉搜索树)的概念、特点以及实现细节。我们首先介绍了 AVL 树的基本原理,并详细分析了其四种旋转操作,包括左旋、右旋、左右双旋和右左双旋,阐述了它们在保持树平衡中的重要作用。…...

SAP 特别总账标识[SGL]
1. 特别总账标识(SGL)概述 1.1 定义与目的 特别总账标识(Special General Ledger, SGL)在SAP系统中用于区分客户或供应商的不同业务类型,以便将特定的业务交易记录到非标准的总账科目中。 定义:SGL是一个用于标记特殊业务类型的…...

认知杂谈77《简单:通往高手的技巧》
内容摘要: 在信息爆炸、关系复杂的时代,简单是复杂背后的真谛。简单如“112”,是智慧的朴素呈现。简单有强大力量,像清泉般纯净,如“我爱你”简单却有力,基础财务知识也体现其在理财中的作…...

《SmartX ELF 虚拟化核心功能集》发布,详解 80+ 功能特性和 6 例金融实践
《SmartX ELF 虚拟化核心功能集》电子书现已发布!本书详细介绍了 SmartX ELF 虚拟化及云平台核心功能,包含虚机服务、容器服务、网络服务、存储服务、运维管理、工具服务、数据保护等各个方面。 即刻下载电子书,了解如何利用基于 SmartX ELF …...

9月23日
思维导图 作业 统计家目录下.c文件的个数 #!/bin/bashnum0for file in ~/*.c; doif [ -f "$file" ]; then((num))fi doneecho "家目录下.c文件的个数: $num"...

如何使用Jinja定义dbt宏
dbt宏在dbt框架内的工作方式与传统编程中的函数类似。它允许用户将特定的、通常是重复的SQL逻辑封装到可调用的命名单元中,就像在其他编程语言中用函数来避免重复代码一样;dbt宏定义特定业务的SQL逻辑,然后在dbt项目中需要的地方调用该宏函数…...

深入理解 JavaScript 三大作用域:全局作用域、函数作用域、块级作用域
一. 作用域 对于多数编程语言,最基本的功能就是能够存储变量当中的值、并且允许我们对这个变量的值进行访问和修改。那么有了变量之后,应该把它放在哪里、程序如何找到它们?是否需要提前约定好一套存储变量、访问变量的规则?答案…...

【门牌制作 / A】
题目 代码 #include <bits/stdc.h> using namespace std; int main() {int cnt 0;for (int i 1; i < 2020; i){string s;s to_string(i);cnt count(s.begin(), s.end(), 2);}cout << cnt; }...

Git+Jenkins 基本使用(Basic Usage of Git+Jenkins)
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:Linux运维老纪的首页…...

智谱清言:智能语音交互的引领者,解锁高效沟通新体验
哪个编程工具让你的工作效率翻倍? 在日益繁忙的工作环境中,选择合适的编程工具已成为提升开发者工作效率的关键。不同的工具能够帮助我们简化代码编写、自动化任务、提升调试速度,甚至让团队协作更加顺畅。那么,哪款编程工具让你…...

前端组件库
vant2现在的地址 Vant 2 - Mobile UI Components built on Vue...

后端常用的mybatis-plus方法以及配合querywapper使用
目录 一、插入数据 save方法 二、删除操作 removeById方法 三、更新操作 updateById方法 四、查询操作 selectById方法 五、条件构造器QueryWrapper的更多用法 1.比较操作符 2.逻辑操作符 3.模糊查询 4.空值判断 一、插入数据 save方法 save(T entity):向数据库中插入…...

【设计模式】万字详解:深入掌握五大基础行为模式
作者:后端小肥肠 🍇 我写过的文章中的相关代码放到了gitee,地址:xfc-fdw-cloud: 公共解决方案 🍊 有疑问可私信或评论区联系我。 🥑 创作不易未经允许严禁转载。 姊妹篇: 【设计模式】…...

C++ 9.19
练习:要求在堆区申请5个double类型的空间,用于存储5名学生的成绩。请自行封装函数完成 1> 空间的申请 2> 学生成绩的录入 3> 学生成绩的输出 4> 学生成绩进行降序排序 5> 释放申请的空间 主程序中用于测试上述函数 #include<ios…...

[Unity Demo]从零开始制作空洞骑士Hollow Knight第五集:再制作更多的敌人
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、制作敌人另个爬虫Crawler 1.公式化导入制作另个爬虫Crawler素材2.制作另个爬虫Crawler的Crawler.cs状态机3.制作敌人另个爬虫Crawler的playmaker状态机二、…...

怎么把excel翻译成英文?这些翻译技巧记得收藏
在处理Excel数据时,我们常常会遇到多语言的数据集,这无疑给数据分析和整理带来了不小的挑战。 幸运的是,随着技术的发展,现在有多种工具可以帮助我们进行Excel中的批量翻译,这些工具以其强大的翻译功能和便捷的操作方…...

信息技术引领的智能化未来
信息技术引领的智能化未来 随着信息技术的飞速发展,社会各个领域正在加速迈入智能化的新时代。信息技术的广泛应用,尤其是人工智能、大数据、物联网等前沿技术的创新与融合,正在从根本上改变着人们的生产和生活方式。本文将探讨信息技术在智…...

【QT开发-Pyside】使用Pycharm与conda配置Pyside环境并新建工程
知识拓展 Pycharm 是一个由 JetBrains 开发的集成开发环境(IDE),它主要用于 Python 编程语言的开发。Pycharm 提供了代码编辑、调试、版本控制、测试等多种功能,以提高 Python 开发者的效率。 Pycharm 与 Python 的关系 Pycharm 是…...

vue选项式写法项目案例(购物车)
一、初始化项目结构 1.初始化vite项目 npm create vite cd vite-project npm install 2.清理项目结构 清空App.vue 删除components目录下的HelloWorld.vue组件 3.为组件的样式启用sacc或less组件 npm i sass4.初始化index.css全局样式 :root{font-size:12px } 二、封装…...

[Linux][进程] 认识进程
基本概念 进程是一个操作系统术语,用来管理与操作程序.在windows下打开任务管理器即可查看目前打开的所有进程 PCB 进程控制块,从代码层面来说 PCB 是进程所有属性的一个结构体,在Linux源码中PCB指的是struct task_struct. Linux环境下: 进程 task_struct 代码 …...

如何安装和注册 GitLab Runner
如何安装和注册 GitLab Runner GitLab Runner 是一个用于运行 GitLab CI/CD (Continuous Integration/Continuous Deployment) 作业。它是一个与 GitLab 配合使用的应用程序,可以在本地或云中运行。Runner 可以执行不同类型的作业,例如编译代码、运行测…...

专业学习|动态规划(概念、模型特征、解题步骤及例题)
一、引言 (一)从斐波那契数列引入自底向上算法 (1)知识讲解 (2)matlap实现递归 (3)带有备忘录的遗传算法 (4)matlap实现带有备忘录的递归算法 “࿱…...

数据结构与算法 #时间复杂度 #空间复杂度
文章目录 前言 一、算法的复杂度 二、时间复杂度 三、空间复杂度 四、例题 1、例1:冒泡排序 2、例2: 3、例3: 4、例4: 二分查找 5、例5: 阶乘 6、例6: 斐波那契 五、常见算法复杂度 总结 前言 路漫漫其修远兮,吾将上下而求索&…...

【多机器人轨迹规划最优解问题】
此类应用场景通常很难有严格意义上的最优解,一般只能得到较优解。限制其获得最优解的主要因素如下: 一、问题的复杂性 多机器人系统的高维度性:每台机器人都有自己的位置、速度、任务等多个状态变量,多台机器人组合在一起使得问…...

机器学习及其应用领域【金融领域】
机器学习及其应用领域【金融领域】 一、智能投顾与资产配置二、信贷审批与风险评估三、支付与交易安全四、金融欺诈检测五、市场预测与情绪分析六、客户服务与个性化推荐七、面临的挑战与未来趋势八、总结 一、智能投顾与资产配置 智能投顾:通过机器学习技术&#…...

【实战教程】PHP与七牛云的完美对接,你值得拥有!
前言: 随着互联网的迅速发展,越来越多的网站和应用程序需要处理大量的图片、视频和其他文件。为了有效地存储和管理这些文件,并提供快速的内容分发服务,开发者们常常依赖于云存储和CDN服务提供商。 七牛云是一家领先的云存储和CD…...

2024网易低代码大赛 | 想参赛但不知道搭什么?灵感就这么水灵灵地来了!
9月6日-10月15日,报名进行时!戳我即可报名! 如果你还没想好要开发什么作品来参赛,那就必须往下 我们采访了n位网易内部人士,搜罗了他们的建议,给你多一些灵感! 注意:下文仅为本次比赛…...