当前位置: 首页 > news >正文

Python燃烧废气排放推断算法模型

🎯要点

  1. 宏观能耗场景模型参数化输入数据,分析可视化输出结果,使用场景时间序列数据模型及定量和定性指标
  2. 使用线图和箱线图、饼图、散点图、堆积条形图、桑基图等可视化模型输出结果
  3. 根据气体排放过程得出其时间序列关系,使用推断模型中计算工具量化气体排放量
  4. 推断模型中计算工具使用的数学工具是恒定比率、时间比率、分位数滚动窗口、均方根、线性插补等

🍪语言内容分比

在这里插入图片描述
在这里插入图片描述

🍇Python时间序列分析

时间序列数学模型

时间序列模型是假设多个时间序列或时间序列之间存在关系的模型。简单回归模型就是一个例子:
y ( t ) = x ( t ) β + ε ( t ) ( 1 ) y(t)=x(t) \beta+\varepsilon(t)\qquad(1) y(t)=x(t)β+ε(t)(1)
其中 y ( t ) = { y t ; t = 0 , ± 1 , ± 2 , … } y(t)=\left\{y_t ; t=0, \pm 1, \pm 2, \ldots\right\} y(t)={yt;t=0,±1,±2,} 是一个序列,以时间下标 t t t 为索引,它是可观测信号序列 x ( t ) = { x t } x(t)=\left\{x_t\right\} x(t)={xt}和不可观测,独立且同分布的随机变量的白噪声序列 ε ( t ) = { ε t } \varepsilon(t)=\left\{\varepsilon_t\right\} ε(t)={εt} 的组合。

一种更通用的模型,我们称之为一般时间回归模型,它假设一种关系,其中包含任意数量的 x ( t ) 、 y ( t ) x(t)、y(t) x(t)y(t) ε ( t ) \varepsilon(t) ε(t) 的连续元素。该模型可以由方程表示
∑ i = 0 p α i y ( t − i ) = ∑ i = 0 k β i x ( t − i ) + ∑ i = 0 q μ i ε ( t − i ) ( 2 ) \sum_{i=0}^p \alpha_i y(t-i)=\sum_{i=0}^k \beta_i x(t-i)+\sum_{i=0}^q \mu_i \varepsilon(t-i)\qquad(2) i=0pαiy(ti)=i=0kβix(ti)+i=0qμiε(ti)(2)
通常认为 α 0 = 1 \alpha_0=1 α0=1 是理所当然的。 左侧前导系数的归一化将 y ( t ) y(t) y(t) 标识为输出序列。方程中的任何和都可以是无限的,但如果模型要可行,则系数序列 { α i } , { β i } \left\{\alpha_i\right\},\left\{\beta_i\right\} {αi},{βi} { μ i } \left\{\mu_i\right\} {μi} 只能依赖于有限数量的参数。

虽然以(2)的形式写出一般模型很方便,但也通常用以下方程表示
y ( t ) = ∑ i = 1 p ϕ i y ( t − i ) + ∑ i = 0 k β i x ( t − i ) + ∑ i = 0 q μ i ε ( t − i ) y(t)=\sum_{i=1}^p \phi_i y(t-i)+\sum_{i=0}^k \beta_i x(t-i)+\sum_{i=0}^q \mu_i \varepsilon(t-i) y(t)=i=1pϕiy(ti)+i=0kβix(ti)+i=0qμiε(ti)

其中 ϕ i = − α i \phi_i=-\alpha_i ϕi=αi 表示 i = 1 , … , p i=1, \ldots, p i=1,,p。这会将序列 y ( t ) y(t) y(t) 的滞后版本与输入序列 x ( t ) x(t) x(t) 及其滞后一起放置在右侧上。

工程师倾向于将其描述为反馈模型,而经济学家更可能将其描述为具有滞后因变量的模型。

由于包含可观察的解释序列 x ( t ) x(t) x(t),上述模型被称为回归模型。当 x ( t ) x(t) x(t)被删除时,我们得到一个更简单的无条件线性随机模型:
∑ i = 0 p α i y ( t − i ) = ∑ i = 0 q μ i ε ( t − i ) \sum_{i=0}^p \alpha_i y(t-i)=\sum_{i=0}^q \mu_i \varepsilon(t-i) i=0pαiy(ti)=i=0qμiε(ti)
这是自回归移动平均模型。

Python自回归综合移动平均线

import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from statsmodels.tsa.stattools import adfuller
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.tsa.arima_model import ARIMA
from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()

我们将使用包含特定日期飞机乘客数量的数据集。

df = pd.read_csv('air.csv', parse_dates = ['Month'], index_col = ['Month'])
df.head()
plt.xlabel('Date')
plt.ylabel('Number of air passengers')
plt.plot(df)

在建立模型之前,我们必须确保时间序列是平稳的。有两种主要方法可以确定给定时间序列是否平稳。

  • 滚动统计:绘制滚动平均值和滚动标准差。如果时间序列随时间保持恒定(用肉眼观察线条是否笔直且平行于 x 轴),则时间序列是平稳的。
  • 增强迪基-富勒检验:如果 p 值较低(根据原假设)并且 1%、5%、10% 置信区间的临界值尽可能接近增强迪基-富勒统计,则时间序列被视为平稳。

对于那些不理解平均值和滚动平均值之间区别的人来说,10 天滚动平均值会将前 10 天的收盘价平均作为第一个数据点。下一个数据点会删除最早的价格,加上第 11 天的价格并取平均值,依此类推。

rolling_mean = df.rolling(window = 12).mean()
rolling_std = df.rolling(window = 12).std()
plt.plot(df, color = 'blue', label = 'Original')
plt.plot(rolling_mean, color = 'red', label = 'Rolling Mean')
plt.plot(rolling_std, color = 'black', label = 'Rolling Std')
plt.legend(loc = 'best')
plt.title('Rolling Mean & Rolling Standard Deviation')
plt.show()

正如您所看到的,滚动平均值和滚动标准差随着时间的推移而增加。因此,我们可以得出结论,时间序列不是平稳的。

result = adfuller(df['Passengers'])
print('ADF Statistic: {}'.format(result[0]))
print('p-value: {}'.format(result[1]))
print('Critical Values:')
for key, value in result[4].items():print('\t{}: {}'.format(key, value))

获取因变量的对数是降低滚动平均值增加速率的简单方法。

df_log = np.log(df)
plt.plot(df_log)

让我们创建一个函数来运行两个测试,以确定给定的时间序列是否平稳。

def get_stationarity(timeseries):rolling_mean = timeseries.rolling(window=12).mean()rolling_std = timeseries.rolling(window=12).std()original = plt.plot(timeseries, color='blue', label='Original')mean = plt.plot(rolling_mean, color='red', label='Rolling Mean')std = plt.plot(rolling_std, color='black', label='Rolling Std')plt.legend(loc='best')plt.title('Rolling Mean & Standard Deviation')plt.show(block=False)result = adfuller(timeseries['Passengers'])print('ADF Statistic: {}'.format(result[0]))print('p-value: {}'.format(result[1]))print('Critical Values:')for key, value in result[4].items():print('\t{}: {}'.format(key, value))

👉参阅、更新:计算思维 | 亚图跨际

相关文章:

Python燃烧废气排放推断算法模型

🎯要点 宏观能耗场景模型参数化输入数据,分析可视化输出结果,使用场景时间序列数据模型及定量和定性指标使用线图和箱线图、饼图、散点图、堆积条形图、桑基图等可视化模型输出结果根据气体排放过程得出其时间序列关系,使用推断模…...

Qt中多语言的操作(以QtCreator为例)

1、首先,我们在代码中与文本相关的且需要支持多语言的地方,用tr来包含多语言key(多语言key是我们自己定义的),如下 //举例 QPushButton* btnnew QPushButton(this); btn->move(20,20); btn->resize(100,50); //…...

计算机毕业设计 社区医疗服务系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍:✌从事软件开发10年之余,专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ 🍅文末获取源码联系🍅 👇🏻 精…...

html+css学习

html 元素 html元素是HTML的根元素,一个文档只能有一个,其他所有元素都是其后代元素 html有一个属性为lang,其作用是: 帮助语言合成工具确定要使用的发音帮助翻译工具确定要使用的翻译规则 当属性lang“en”则表示告诉其浏览器…...

2.gitlab ce 细粒度的权限控制

需求: 在提交merge reqeust时,必须指定审核人,并且要选审核人清单里的 有个code owners应该可以做到(gitlab ce应该也可以用) 下面是参考的文档 细粒度的代码权限怎么做?极狐GitLab 代码所有者来帮忙 -…...

G - Merchant Takahashi / F - Useless for LIS

G - Merchant Takahashi 首先考虑暴力 DP。 设最后一步走到编号 ii 的城镇的方案的最大收益为 fifi​,则每次集市相当于是 fTi←fj−C∣Ti−j∣Pi(1≤j≤n)。 这样每次可以通过枚举 j 来转移,这样总时间复杂度是 O(nm) 的&…...

自然语言处理实例

引子:基于聊天机器人项目的自然语言处理(NLP)学习路线 自然语言处理(Natural Language Processing,简称 NLP)是人工智能的重要分支,旨在帮助计算机理解、生成和处理人类语言。NLP 技术广泛应用于搜索引擎、机器翻译、语音识别、文本摘要、情感分析、对话系统等领域。为…...

『功能项目』主角属性值显示【75】

本章项目成果展示 我们打开上一篇74穿戴装备的项目, 本章要做的事情是制作主角属性界面,实现在面板上显示主角的攻击力等数值 制作一个简易的主角界面(创建Image与Text显示即可) 创建一个空物体 重命名为PlayerInfo 在其子级下创…...

单片机嵌入式编程中常用技术点

Open CV,QT,Linux,多线程,网络编程,文件编程在单片机嵌入式编程中,这些技术在单片机嵌入式编程中的作用: 一、OpenCV 在单片机嵌入式编程中,虽然单片机的计算能力相对有限&#xf…...

【毕业论文+源码】基于ASP+NET的人事管理系统

引言 人事管理系统是针对企业内部人事管理设计,分角色实现对公司部门及各部门员工的增、删、改、查以及对员工考勤的管理。 编写目的: 在系统需求分析的基础上,对需求分析中产生的功能模块进行过程描述,设计功能模块的内部细节&…...

计算机毕业设计 校园志愿者管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍:✌从事软件开发10年之余,专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ 🍅文末获取源码联系🍅 👇🏻 精…...

速通LLaMA2:《Llama 2: Open Foundation and Fine-Tuned Chat Models》全文解读

文章目录 概览LLaMA和LLaMA2的区别AbstractIntroductionPretrainingFine-tuning1. 概括2、Supervised Fine-Tuning(SFT)3、⭐Reinforcement Learning with Human Feedback(RLHF)🔺总览Training Objectives:…...

如何使用VM中win10搭建Hfish蜜罐(危险感知平台)。从下载到部署详细教程

得而不惜就该死。 -----古月方源 引言:最近跟一个老师做东西,叫我搞清楚蜜罐的搭建和一些底层逻辑,所以记录一下。 一、实验准备 (一)win10虚拟机 (若有需要可以后台私信) (二&…...

Rust: AES 加密算法库

在Rust中,进行AES加密通常会用到一些现有的库,因为Rust标准库中并不直接提供AES加密的API。一个非常流行的库是crypto-box或者更广泛使用的ring库,但ring库由于依赖问题有时可能难以编译,另一个常用的库是cryptography的Rust绑定&…...

计算机网络34——Windows内存管理

1、计算机体系结构 2、内存管理 分为连续分配管理和非连续分配管理 在块内存在的未使用空间叫内部碎片,在块外存在的未使用空间叫外部碎片 固定分区分配可能出现内部碎片,动态分区分配可能出现外部碎片 3、逻辑地址和实际地址的互相转换 4、缺页中断 …...

Redisson 总结

1. 基础使用 1.1 引入依赖 <dependencies><dependency><groupId>org.redisson</groupId><artifactId>redisson-spring-boot-starter</artifactId></dependency> </dependencies>包含的依赖如下 1.2 配置文件 其实默认主机就…...

EfficientFormer实战:使用EfficientFormerV2实现图像分类任务(一)

摘要 EfficientFormerV2是一种通过重新思考ViT设计选择和引入细粒度联合搜索策略而开发出的新型移动视觉骨干网络。它结合了卷积和变换器的优势&#xff0c;通过一系列高效的设计改进和搜索方法&#xff0c;实现了在移动设备上既轻又快且保持高性能的目标。这一成果为在资源受…...

文心智能体搭建步骤

通过使用文心智能体平台来创建智能体的过程。这种方法可以让没有编程经验的人也能快速构建智能体&#xff0c;降低了技 术门槛。以下是一些建议和心得: 1.选择合适的平台:文心智能体平台是一个优秀的选择&#xff0c;它提供了零代码和低代码的开发环境&#xff0c;极大地降低了…...

PHP安全

PHP伪协议&#xff1a; 一.【file://协议】 PHP.ini&#xff1a; file:// 协议在双off的情况下也可以正常使用&#xff1b; allow_url_fopen &#xff1a;off/on allow_url_include&#xff1a;off/on file:// 用于访问本地文件系统&#xff0c;在CTF中通常用来读取本地文…...

c++278函数指针

#define _CRT_SECURE_NO_WARNINGS #include<stdlib.h> #include<string.h> #include<stdio.h>//数组类型基本语法知识梳理 //定义一个数组类型 //int a[10];//定义一个指针数组类型//定义一个指向数组类型的指针 数组类型的指针void main() {int a[10];//a代…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版​分享

平时用 iPhone 的时候&#xff0c;难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵&#xff0c;或者买了二手 iPhone 却被原来的 iCloud 账号锁住&#xff0c;这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中&#xff0c;其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下&#xff1a; 初始判断与哈希计算&#xff1a; 首先&#xff0c;putVal 方法会检查当前的 table&#xff08;也就…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能&#xff1a;服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...