当前位置: 首页 > news >正文

【标准库的典型内容】std::declval

一、 d e c l v a l declval declval的基本概念和常规范例

s t d : : d e c l v a l std::declval std::declval C + + 11 C++11 C++11标准中出现的一个函数模板。这个函数模板设计的比较奇怪(没有实现,只有声明),因此无法被调用,通常是和 d e c l t y e decltye decltye s i z e o f sizeof sizeof等关键字一起使用,来进行类型推导等等。


下面是 d e c l v a l declval declval的一般源码实现:

//declval的源码形式,只有声明没有实现,一般是配合decltype使用的
template<typename T>
std::add_rvalue_reference_t<T>declval() noexcept;

这里的 s t d : : a d d _ r v a l u e _ r e f e r e n c e _ t std::add\_rvalue\_reference\_t std::add_rvalue_reference_t s t d : : a d d _ r v a l u e _ r e f e r e n c e std::add\_rvalue\_reference std::add_rvalue_reference的别名模板,用于将传入的类型加入 & & \&\& &&,下面是它的使用:


//将传入的类型加上两个&&
void Test1() {using Type1 = std::add_rvalue_reference<int>::type;std::cout << "Type1 = " << type_id_with_cvr<Type1>().name() << "\n";using Type2 = std::add_rvalue_reference<int&>::type;std::cout << "Type2 = " << type_id_with_cvr<Type2>().name() << "\n"; //折叠后还是&using Type3 = std::add_rvalue_reference<int&&>::type;std::cout << "Type3 = " << type_id_with_cvr<Type3>().name() << "\n"; //折叠后还是&&//也可以是用别名模板using Type4 = std::add_rvalue_reference_t<const int>;std::cout << "Type4 = " << type_id_with_cvr<Type4>().name() << "\n";}

一般在传入参数的时候,会发生折叠引用,如 & + & & = & \&+\&\& = \& &+&&=&,这里不多讨论。

下面是运行结果:

在这里插入图片描述

至于为什么返回右值引用,而不返回左值引用,下面将会介绍。


二、 s t d : : d e c l v a l std::declval std::declval的使用

2.1 类 A A A的实现

首先,我们存在这么一个类 A A A,用于测试:

//std::declval的简单使用
class A {
public:A(int i) {std::cout << "A::A()函数执行了,this = " << this << "\n";}double myfunc(double x = 12.1) {std::cout << "A::myfunc()函数执行了,this = " << this << "\n";return x;}
};

2.2 推导 d e c l v a l declval declval返回的类名

然后,我们可以利用 d e c l t y p e + d e c l v a l decltype+declval decltype+declval来推导 A A A的类型名,如下,注意 d e c l v a l declval declval后面需要跟着一个 ( ) () ()表示函数调用:

using YT = decltype(std::declval<A>()); //将A转为右值引用std::cout << "YT = " << type_id_with_cvr<YT>().pretty_name() << "\n";

返回的类型是 A A A & & \&\& &&进行折叠后的结果,是一个右值引用类型。

在这里插入图片描述


2.3 推导 d e c l v a l declval declval返回的函数返回值类型

在类 A A A存在成员函数,如果我们想要推导这个成员函数的返回值类型,我们需要怎么做呢?

通常情况下,我们可能这样写代码:

A tmp(1);
std::cout << "mydouble() 返回类型 = " <<type_id_with_cvr<decltype((tmp.myfunc()))>().pretty_name() << "\n";

然而,这样推导会调用这个函数,如下:

在这里插入图片描述


但是,如果我们通过 d e c l v a l declval declval来推导返回值,就不会调用这个函数,这也是 d e c l v a l declval declval的使用场景之一,并且,由于没有实例化出这个类,我们无需提供它的构造函数参数(如果存在),如下:

//如果不想调用函数而推导处函数返回值,因为decltype不会调用函数
std::cout << "mydouble() 返回类型 = " <<type_id_with_cvr<decltype(std::declval<A>().myfunc())>().pretty_name() << "\n";

可以发现,没有调用函数就推导出了其返回值类型:

在这里插入图片描述


这样的写法可以看做 d e c l v a l < A > ( ) declval<A>() declval<A>()返回一个 A & & A\&\& A&&的临时变量,然后这个临时变量调用了 m y f u n c ( ) myfunc() myfunc()函数。

可以参考下面的写法:
在这里插入图片描述
如果直接调用 a y i n o b j k ( ) ayinobjk() ayinobjk(),将会链接错误,因为这个函数没有实现。
而如果通过 d e c l t y p e decltype decltype,那么将不会编译失败,也不会链接失败:

下图的写法实际上是推导出了 d o u b l e double double类型,然后定义了 d o u b l e double double类型的变量 m y d b l v a l mydblval mydblval
在这里插入图片描述
通过这个例子,也就可以理解了 d e c l v a l < A > ( ) . m y f u n c ( ) declval<A>().myfunc() declval<A>().myfunc()的写法了。


三、 d e c l v a l declval declval返回右值的原因

3.1 返回值自身的问题

首先我们实现三种返回值的 d e c l v a l declval declval

//返回值
template<typename T>
T mydeclval() noexcept; //只声明,无法被调用//返回右值引用
template<typename T>
T&& mydeclval2() noexcept; //只声明,无法被调用//返回左值引用也行
template<typename T>
T& mydeclval3() noexcept; //只声明,无法被调用

我们类 A A A中加入一个 p r i v a t e private private的析构函数:

//std::declval的简单使用
class A {
public:A(int i) {std::cout << "A::A()函数执行了,this = " << this << "\n";}double myfunc(double x = 12.1) {std::cout << "A::myfunc()函数执行了,this = " << this << "\n";return x;}private:~A() {std::cout << "A::~A()函数执行了\n";}
};

此时,如果我们使用返回值类型的 d e c l t y p e decltype decltype语义上将会编译错误:

std::cout << "mydeclval<A>的返回类型 = " << type_id_with_cvr<decltype(mydeclval<A>())>().pretty_name() << "\n";
//无法被析构,从语义上要实例化一个临时对象A(尽管实际上并不会)
std::cout << "mydeclval<A>的返回类型 = " << type_id_with_cvr<decltype(mydeclval<A>().myfunc())>().pretty_name() << "\n";//同样的还有sizeof,也会编译失败
std::cout << "mydeclval<A>的大小 = " << sizeof(mydeclval<A>()) << "\n";

因为是返回值类型,所以会生成一个临时变量,但是这个临时变量的析构函数在 p r i v a t e private private内,无法被析构,因此编译器会报错(编译器无法生成一个不能析构的变量),即使使用 d e c l t y p e decltype decltype不会实例化出任何类型。


如果这里使用左值引用或右值引用的返回类型,就可以顺利通过编译了,因为是返回引用,所以无需考虑创建副本、析构的问题,因此在语义上是能通过编译的:


std::cout << "mydeclval<A>的返回类型 = " << type_id_with_cvr<decltype(mydeclval<A>())>().pretty_name() << "\n";
//无法被析构,从语义上要实例化一个临时对象A(尽管实际上并不会)
std::cout << "mydeclval<A>的返回类型 = " << type_id_with_cvr<decltype(mydeclval<A>().myfunc())>().pretty_name() << "\n";//同样的还有sizeof,也会编译失败
std::cout << "mydeclval<A>的大小 = " << sizeof(mydeclval<A>()) << "\n";

3.2 返回左值引用还是右值引用

我们知道,如果形参是 & \& &,那么通过折叠引用返回的类型永远都将是 & \& &,左值引用,无法得到右值引用。

运行下面的代码:

//返回左值引用还是右值引用
void Test4() {//如果是右值引用std::cout << "返回值为A&&的折叠引用情况:\n";std::cout << "decltype<mydecltype2<A>()>返回类型为:" <<type_id_with_cvr<decltype(mydeclval2<A>())>().pretty_name() << "\n";std::cout << "decltype<mydecltype2<A&>()>返回类型为:" <<type_id_with_cvr<decltype(mydeclval2<A&>())>().pretty_name() << "\n";std::cout << "decltype<mydecltype2<A&&>()>返回类型为:" <<type_id_with_cvr<decltype(mydeclval2<A&&>())>().pretty_name() << "\n";std::cout << "\n";//如果是左值引用std::cout << "返回值为A&的折叠引用情况:\n";std::cout << "decltype<mydecltype3<A>()>返回类型为:" <<type_id_with_cvr<decltype(mydeclval3<A>())>().pretty_name() << "\n";std::cout << "decltype<mydecltype3<A&>()>返回类型为:" <<type_id_with_cvr<decltype(mydeclval3<A&>())>().pretty_name() << "\n";std::cout << "decltype<mydecltype3<A&&>()>返回类型为:" <<type_id_with_cvr<decltype(mydeclval3<A&&>())>().pretty_name() << "\n";}

可见,使用右值引用可以得到两种引用情况,而使用左值引用只能得到左值引用类型:

在这里插入图片描述

3.2 调用引用限定符修饰的成员函数

通常,成员函数可以用一些限定,写在函数的 ( ) () ()之后,如 c o n s t / & / & & const/\&/\&\& const/&/&&等等,而调用它的类型也必须满足这样的限定。
我们这里具体讨论一下,参考下方代码:

//调用引用限定符修饰的成员函数
class ALR {
public:void onAnyValue() {std::cout << "ALR::onAnyValue()函数执行了\n";}void onLvalue()& { //只能被ALR的左值对象调用std::cout << "ALR::onLvalue()函数执行了\n";}void onRvalue()&& { //只能被ALR的右值对象调用std::cout << "ALR::onRvalue()函数执行了\n";}
};void Test5() {//返回右值引用decltype(mydeclval2<ALR>().onAnyValue()); //成功,没有限制//decltype(mydeclval2<ALR>().onLvalue()); //失败,&& 不能调用 &decltype(mydeclval2<ALR>().onRvalue()); //成功,&& 调用&&decltype(mydeclval2<ALR&>().onAnyValue()); //成功,没有限制decltype(mydeclval2<ALR&>().onLvalue()); //成功,&+ && = &//decltype(mydeclval2<ALR&>().onRvalue()); //失败,&+&& = &,不能调用&&decltype(mydeclval2<ALR&&>().onAnyValue()); //成功,没有限制//decltype(mydeclval2<ALR&&>().onLvalue()); //失败,&&+ && = &&,不能调用&decltype(mydeclval2<ALR&&>().onRvalue()); //成功,&&+&& = &&//返回左值引用decltype(mydeclval3<ALR>().onAnyValue()); //成功,没有限制decltype(mydeclval3<ALR>().onLvalue()); //成功,&调用&//decltype(mydeclval3<ALR>().onRvalue()); //失败,& 调用&&decltype(mydeclval3<ALR&>().onAnyValue()); //成功,没有限制decltype(mydeclval3<ALR&>().onLvalue()); //成功,&+ & = &//decltype(mydeclval3<ALR&>().onRvalue()); //失败,&+& = &,不能调用&&decltype(mydeclval3<ALR&&>().onAnyValue()); //成功,没有限制decltype(mydeclval3<ALR&&>().onLvalue()); //成功,&&+ & = &,调用&//decltype(mydeclval3<ALR&&>().onRvalue()); //失败,&+&& = &,不能调用&&}

通过折叠引用,以上注释起来的部分将会编译失败,因为限定符不符。


通过观察,我们发现如果返回左值引用,那么将无法调用右值引用限定符的成员函数,而如果返回右值引用,则没有这种情况发生。 因此, d e c l v a l declval declval返回右值引用比较合适。

四、推导函数返回值

4.1 全局函数

使用 d e c l v a l declval declval可以用于推导函数返回值,参考下方模板:

//declval推导函数返回值
int myfunc(int a, int b) {std::cout << "调用了myfunc函数\n";return a + b;
}//函数模板用于推导函数返回值
template<typename T_F, typename... U_Args>
decltype(std::declval<T_F>()(std::declval<U_Args>()...)) TestFnRtnImpl(T_F func, U_Args... args) {std::cout << "---------------begin---------------\n";std::cout << "T_F:" << type_id_with_cvr<T_F>().pretty_name() << "\n";std::cout << "---------------end---------------\n";auto rtnvalue = func(args...);return rtnvalue;
}

如果调用以下函数:

//declval推导函数返回值
int myfunc(int a, int b) {std::cout << "调用了myfunc函数\n";return a + b;
}
auto res = TestFnRtnImpl(myfunc, 1, 2);

其中,上面的 d e c l t y p e ( s t d : : d e c l v a l < T _ F > ( ) ( s t d : : d e c l v a l < U _ A r g s > ( ) . . . ) ) decltype(std::declval<T\_F>()(std::declval<U\_Args>()...)) decltype(std::declval<T_F>()(std::declval<U_Args>()...))可以看做: i n t ( ∗ & & ) ( i n t , i n t ) ( i n t & & , i n t & & ) int(*\&\&)(int,int)(int\&\&,int\&\&) int(&&)(int,int)int&&,int&&类型。

即传入的函数名是一个函数指针,返回函数指针的右值引用。然后后面的一个 d e c l v a l declval declval用于展开参数包,注意 . . . ... ...的写法。


当然,我们也能使用 a u t o + d e c l t y p e auto+decltype auto+decltype的方式推导返回类型,也是一样的:

// 使用 decltype 和 auto 推导函数的返回类型
template<typename T_F, typename... U_Args>
auto TestFnRtnImpl2(T_F func, U_Args... args) -> decltype(func(args...)) {std::cout << "---------------begin---------------\n";std::cout << "T_F:" << type_id_with_cvr<T_F>().pretty_name() << "\n";std::cout << "---------------end---------------\n";return func(args...);
}

如下所示:

在这里插入图片描述

4.2 成员函数

同样的,也可以使用 d e c l v a l declval declval来推导成员函数返回值,只不过需要实例化出一个成员(不是静态成员函数),利用到的是成员函数指针和这个对象的地址。

参考下方代码:

//函数模板用于推导成员函数返回值
template<typename T_F, typename T_Obj, typename... U_Args>
decltype((std::declval<T_Obj*>()->*std::declval<T_F>())(std::declval<U_Args>()...))
TestFnRtnImp3(T_Obj* obj, T_F func, U_Args... args) {//绑定发生了偏移std::cout << "---------------begin---------------\n";std::cout << "T_F:" << type_id_with_cvr<T_F>().pretty_name() << "\n";std::cout << "T_Obj:" << type_id_with_cvr<T_Obj>().pretty_name() << "\n";std::cout << "---------------end---------------\n";return (obj->*func)(args...);
}//使用auto+decltype推导成员函数返回值
template<typename T_F, typename T_Obj, typename... U_Args>
auto TestFnRtnImp4(T_Obj* obj, T_F func, U_Args... args) -> decltype((obj->*func)(args...)) {//绑定发生了偏移std::cout << "---------------begin---------------\n";std::cout << "T_F:" << type_id_with_cvr<T_F>().pretty_name() << "\n";std::cout << "T_Obj:" << type_id_with_cvr<T_Obj>().pretty_name() << "\n";std::cout << "---------------end---------------\n";return (obj->*func)(args...);
}

只是,有个细节需要注意的,这里发生了绑定的偏移,原本绑定成员函数指针的变量绑定上了对象地址:
在这里插入图片描述同样的, ( s t d : : d e c l v a l < T _ O b j ∗ > ( ) − > ∗ s t d : : d e c l v a l < T _ F > ( ) ) ( s t d : : d e c l v a l < U _ A r g s > ( ) . . . ) (std::declval<T\_Obj*>()->*std::declval<T\_F>())(std::declval<U\_Args>()...) (std::declval<T_Obj>()>std::declval<T_F>())(std::declval<U_Args>()...),这里可以看做是: d o u b l e ( A ∗ ) : : ( d o u b l e ) ( d o u b l e & ) double (A*)::(double)(double\&) double(A)::(double)(double&),和之前的全局函数类似。

相关文章:

【标准库的典型内容】std::declval

一、 d e c l v a l declval declval的基本概念和常规范例 s t d : : d e c l v a l std::declval std::declval 是 C 11 C11 C11标准中出现的一个函数模板。这个函数模板设计的比较奇怪&#xff08;没有实现&#xff0c;只有声明&#xff09;&#xff0c;因此无法被调用&…...

深入了解package.json文件

在前端项目开发中&#xff0c;我们经常会遇到package.json文件。这个文件不仅是一个简单的配置文件&#xff0c;它还承担了项目管理的重任。下面&#xff0c;我们将深入探讨package.json文件的各个字段和作用&#xff0c;并通过实例来帮助你更好地理解和使用它。 package.json…...

【基础知识】网络套接字编程

套接字 IP地址 port&#xff08;端口号&#xff09; socket&#xff08;套接字&#xff09; socket常见API //创建套接字 int socket(int domain, int type, int protocol); //绑定端口 int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen); //监听套接字…...

小程序地图展示poi帖子点击可跳转

小程序地图展示poi帖子点击可跳转 是类似于小红书地图功能的需求 缺点 一个帖子只能有一个点击事件&#xff0c;不适合太复杂的功能&#xff0c;因为一个markers只有一个回调回调中只有markerId可以使用。 需求介绍 页面有地图入口&#xff0c;点开可打开地图界面地图上展…...

传统到AI 大数据分析的演变,颠覆智慧水电的未来?

传统到AI 大数据分析的演变&#xff0c;颠覆智慧水电的未来&#xff1f; 前言传统到AI 大数据分析的演变 前言 水电作为一种重要的能源形式&#xff0c;一直在我们的生活中扮演着至关重要的角色。而如今&#xff0c;随着科技的飞速发展&#xff0c;智慧水电和 AI 大数据应用的…...

while语句

1.while使用 打印1-10 #include<stdio.h> int main() {int a 1;while (10 > a){printf("%d\n", a);a 1;}return 0; } 2.while语句中的break&#xff0c;continue break&#xff1a; 跳出while语句 #include<stdio.h> int main() {int a 0;wh…...

机器学习(西瓜书)第 10 章 降维与度量学习

10.1 k近邻学习kNN k 近邻(k-Nearest Neighbor,简称kNN)学习是一种常用的监督学习方法,其工作机制非常简单&#xff1a;给定测试样本&#xff0c;基于某种距离度量找出训练集中与其最靠近的k个训练样本&#xff0c;然后基于这k个 “邻居”的信息来进行预测.通常&#xff0c;在…...

828华为云征文 | 云服务器Flexus X实例,Docker集成搭建Halo博客平台

828华为云征文 | 云服务器Flexus X实例&#xff0c;Docker集成搭建Halo博客平台 Halo博客平台是一款基于Java的开源博客系统&#xff0c;以其简单易用、功能强大、美观大方等特点而受到广泛欢迎&#xff0c;采用了多种先进的技术框架&#xff0c;包括Freemarker模板引擎、Vue.j…...

Android carrier_list.textpb 和apns-conf.xml 配置文件参考

简介 针对SIM 的APN配置是在apns-conf.xml,而Google源码中有apns-full-conf.xml案例参考,是加入了carrier_id的统一配置,就不用单独的一张张卡配了。 apns-conf.xml和apns-full-conf.xml有什么区别? 在于它们包含的配置内容和复杂性,full包含了carrier_id字段。 详细代…...

二期 1.4 Nacos安装部署 - Window版

本文目录 Nacos支持三种部署模式环境准备下载Nacos启动登录服务注册与查看Nacos支持三种部署模式 单机模式 - 用于测试和单机试用。集群模式 - 用于生产环境,确保高可用。多集群模式 - 用于多数据中心场景。以 Window单机模式 抛转引玉,其它部署方式参考官方文档: https://n…...

vue3基础九问,你会几问

1. Vue是什么&#xff1f; Vue.js 是一个用于构建用户界面的渐进式 JavaScript 框架。它的核心库只关注视图层&#xff0c;采用自下而上的增量开发设计&#xff0c;这使得你可以将 Vue 轻松地整合到现有的项目中&#xff0c;或者与其他前端库一起使用。Vue 的目标是通过提供反…...

Linux系统应用之知识补充——OpenEuler(欧拉)的安装和基础配置

前言 这篇文章将会对OpenEuler的安装进行详解&#xff0c;一步一步跟着走下去就可以成功 注意 &#xff1a;以下的指令操作最好在root权限下进行&#xff08;即su - root&#xff09; ☀️工贵其久&#xff0c;业贵其专&#xff01; 1、OpenEuler的安装 这里我不过多介绍&a…...

Git(4):修改git提交日志

修改最新一次提交的信息 git commit --amend 修正提交信息 在打开的编辑器中修改信息&#xff0c;保存并退出&#xff0c;Git 会用新的提交信息替换掉旧的提交信息&#xff08;commit-id 变化&#xff09;。也可以使用 git commit --amend -m "" 直接修改日志&#…...

【深度学习】(1)--神经网络

文章目录 深度学习神经网络1. 感知器2. 多层感知器偏置 3. 神经网络的构造4. 模型训练损失函数 总结 深度学习 深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向。 从上方的内容包含结果&#xff0c;我们可以知道&#xff0c;在学习深度学…...

测试文件和数据库文件

接口测试 flaks项目入口文件manage.py路由配置 import requests#首先面向对象作封装&#xff0c;避免相同代码反复编写 class HttpApiTest:def test_get(self,url,data{}): #用来测试get方法的接口 #self通过共享self类中间的变量 #url用来请求接口 #data可传可不传res reques…...

redis集群模式连接

目录 一&#xff1a;背景 二&#xff1a;实现过程 三&#xff1a;总结 一&#xff1a;背景 redis集群通过将数据分散存储在多个主节点上&#xff0c;每个主节点可以有多个从节点进行数据的复制&#xff0c;以此来实现数据的高可用性和负载均衡。在集群模式下&#xff0c;客户…...

Linux高级I/O:多路转接模型

目录 一.常见的IO模型介绍二.多路转接I/O1.select1.1.函数解析1.2. select特点和缺点1.3.基于 select 的多客户端网络服务器 2.poll2.1.poll函数解析2.2.poll特点和缺点2.3.基于poll的tcp服务器 3.epoll3.1.系列函数解析3.2.epoll原理解析2.3.基于 select 的多客户端网络服务器…...

MongoDB Limit 与 Skip 方法

MongoDB Limit 与 Skip 方法 MongoDB 是一个流行的 NoSQL 数据库&#xff0c;它提供了灵活的数据存储和强大的查询功能。在处理大量数据时&#xff0c;我们常常需要限制返回的结果数量或者跳过一部分结果&#xff0c;这时就可以使用 MongoDB 的 limit 和 skip 方法。 Limit 方…...

【2025】中医药健康管理小程序(安卓原生开发+用户+管理员)

博主介绍&#xff1a; ✌我是阿龙&#xff0c;一名专注于Java技术领域的程序员&#xff0c;全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师&#xff0c;我在计算机毕业设计开发方面积累了丰富的经验。同时&#xff0c;我也是掘金、华为云、阿里云、InfoQ等平台…...

VulnHub-Bilu_b0x靶机笔记

Bilu_b0x 靶机 概述 Vulnhub 的一个靶机&#xff0c;包含了 sql 注入&#xff0c;文件包含&#xff0c;代码审计&#xff0c;内核提权。整体也是比较简单的内容&#xff0c;和大家一起学习 Billu_b0x.zip 靶机地址&#xff1a; https://pan.baidu.com/s/1VWazR7tpm2xJZIGUS…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;使用DevEco Studio作为开发工具&#xff0c;采用Java语言实现&#xff0c;包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能&#xff1a;服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...

并发编程 - go版

1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程&#xff0c;系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...

uniapp 开发ios, xcode 提交app store connect 和 testflight内测

uniapp 中配置 配置manifest 文档&#xff1a;manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号&#xff1a;4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用

文章目录 一、背景知识&#xff1a;什么是 B-Tree 和 BTree&#xff1f; B-Tree&#xff08;平衡多路查找树&#xff09; BTree&#xff08;B-Tree 的变种&#xff09; 二、结构对比&#xff1a;一张图看懂 三、为什么 MySQL InnoDB 选择 BTree&#xff1f; 1. 范围查询更快 2…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧

上周三&#xff0c;HubSpot宣布已构建与ChatGPT的深度集成&#xff0c;这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋&#xff0c;但同时也存在一些关于数据安全的担忧。 许多网络声音声称&#xff0c;这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...