当前位置: 首页 > news >正文

【深度学习】(1)--神经网络

文章目录

  • 深度学习
  • 神经网络
    • 1. 感知器
    • 2. 多层感知器
      • 偏置
    • 3. 神经网络的构造
    • 4. 模型训练
      • 损失函数
  • 总结

深度学习

深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向。

在这里插入图片描述

从上方的内容包含结果,我们可以知道,在学习深度学习之前,我们还需要了解一下什么是神经网络。

神经网络

神经网络,我们可以将它类比为人类的神经元,由外界传递信息,产生神经冲动,传递电信号,做出行为的过程。

在这里插入图片描述

这是生物学上的体现,那么,在神经网络中是如何体现的呢?
在这里插入图片描述

由外界传入数据,然后通过“路径”抵达神经元,在每一条的“路径”上会有不同的w参数,与传入的数据进行计算。从而影响接收值:

在这里插入图片描述

在推导式中,每条“路径”上的信息传入神经元,然后对他们进行累加求和,接着经过特定的输出函数sigmoid函数输入,对结果进行分类。

神经网络的本质:通过参数与激活函数来拟合特征与目标之间的真实函数关系。但在一个神经网络的程序中,不需要神经元和线,本质上是矩阵的运算,实现一个神经网络最需要的是线性代数库。

1. 感知器

由两层神经元组成的神经网络–“感知器”(Perceptron),感知器只能线性划分数据。

在这里插入图片描述

对于这样简单的感知器,只能线性划分数据,因为对于神经元的结果,只有y =kx+b一层计算,只可以在二维空间画一条直线划分,这样的话,对于一些区域型的数据无法具体分类,比如:

在这里插入图片描述

对于这组数据的分类,是无法通过一条直线就让它们分开的,那该如何分类N呢?

我们得让分类的线弯曲,比如:

在这里插入图片描述

这样就将类别划分开了。可是,我们该怎样使这条“线”弯曲呢?通过多层感知器。

2. 多层感知器

多层感知器其实就是增加了一个中间层,即隐含层。而这,也就是神经网络可以做非线性分类的关键。

在这里插入图片描述

多层感知器同简单感知器的区别就是多加了1层运算,那这样我们的计算就变成了y=w1x1+w2x2+b,在一个二维图片中,这样的函数计算可以使“线”弯曲,从而实现了非线性分类。

偏置

在神经网络中需要默认增加偏置神经元(节点),这些节点是默认存在的。它本质上是一个只含有存储功能,且存储值永远为1的单元。在神经网络的每个层次中,除了输出层以外,都会含有这样一个偏置单元。

在这里插入图片描述

偏置节点没有输入(前一层中没有箭头指向它)。一般情况下,我们都不会明确画出偏置节点。

3. 神经网络的构造

在这里插入图片描述

神经网络从左到右分为输入层、隐含层、输出层。

需要记忆

  1. 设计一个神经网络时,输入层与输出层的节点数往往是固定的,中间层则可以自由指定
    1. 输入层的节点数:与特征的维度匹配(特征数量)。
    2. 输出层的节点数:与目标的维度匹配(类别结果数量)。
    3. 中间层的节点数:目前业界没有完善的理论来指导这个决策。一般是根据经验来设置。
  2. 神经网络结构图中的拓扑与箭头代表着预测过程时数据的流向,跟训练时的数据流有一定的区别;
  3. 结构图里的关键不是圆圈(代表“神经元”),而是连接线(代表“神经元”之间的连接)。每个连接线对应一个不同的权重(其值称为权值),这是需要训练得到的。

4. 模型训练

模型训练的目的:使得参数尽可能的与真实的模型逼近。

具体做法:

  1. 首先给所有参数赋上随机值。我们使用这些随机生成的参数值,来预测训练数据中的样本。
  2. 计算预测值为yp,真实值为y。那么,定义一个损失值loss,损失值用于判断预测的结果和真实值的误差,误差越小越好。

损失函数

  1. 均方差损失函数

对真实值与预测值作差然后做平方,计算每一条数据的差值平方加起来,然后再除以数据的条数即可得到损失值。

在这里插入图片描述

  1. 多分类的情况下,交叉熵损失函数

运算过程,将一组数据传入:

在这里插入图片描述

公式:

在这里插入图片描述

总结

本篇介绍了:

  1. 神经网络的构造
  2. 神经网络的运行过程
  3. 感知器

相关文章:

【深度学习】(1)--神经网络

文章目录 深度学习神经网络1. 感知器2. 多层感知器偏置 3. 神经网络的构造4. 模型训练损失函数 总结 深度学习 深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向。 从上方的内容包含结果,我们可以知道,在学习深度学…...

测试文件和数据库文件

接口测试 flaks项目入口文件manage.py路由配置 import requests#首先面向对象作封装,避免相同代码反复编写 class HttpApiTest:def test_get(self,url,data{}): #用来测试get方法的接口 #self通过共享self类中间的变量 #url用来请求接口 #data可传可不传res reques…...

redis集群模式连接

目录 一:背景 二:实现过程 三:总结 一:背景 redis集群通过将数据分散存储在多个主节点上,每个主节点可以有多个从节点进行数据的复制,以此来实现数据的高可用性和负载均衡。在集群模式下,客户…...

Linux高级I/O:多路转接模型

目录 一.常见的IO模型介绍二.多路转接I/O1.select1.1.函数解析1.2. select特点和缺点1.3.基于 select 的多客户端网络服务器 2.poll2.1.poll函数解析2.2.poll特点和缺点2.3.基于poll的tcp服务器 3.epoll3.1.系列函数解析3.2.epoll原理解析2.3.基于 select 的多客户端网络服务器…...

MongoDB Limit 与 Skip 方法

MongoDB Limit 与 Skip 方法 MongoDB 是一个流行的 NoSQL 数据库,它提供了灵活的数据存储和强大的查询功能。在处理大量数据时,我们常常需要限制返回的结果数量或者跳过一部分结果,这时就可以使用 MongoDB 的 limit 和 skip 方法。 Limit 方…...

【2025】中医药健康管理小程序(安卓原生开发+用户+管理员)

博主介绍: ✌我是阿龙,一名专注于Java技术领域的程序员,全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师,我在计算机毕业设计开发方面积累了丰富的经验。同时,我也是掘金、华为云、阿里云、InfoQ等平台…...

VulnHub-Bilu_b0x靶机笔记

Bilu_b0x 靶机 概述 Vulnhub 的一个靶机,包含了 sql 注入,文件包含,代码审计,内核提权。整体也是比较简单的内容,和大家一起学习 Billu_b0x.zip 靶机地址: https://pan.baidu.com/s/1VWazR7tpm2xJZIGUS…...

Python | Leetcode Python题解之第421题数组中两个数的最大异或值

题目: 题解: class Trie:def __init__(self):# 左子树指向表示 0 的子节点self.left None# 右子树指向表示 1 的子节点self.right Noneclass Solution:def findMaximumXOR(self, nums: List[int]) -> int:# 字典树的根节点root Trie()# 最高位的二…...

如何将普通Tokenizer变成Fast Tokenizer

现在的huggingface库里面Tokenizer有两种,一种就是普通的,另一种是fast的。fast和普通的区别就是fast使用rust语言编写,在处理大量文本的时候会更快。我自己测试的时候单一一句的话fast要比普通的慢一些,当量叠上来,到…...

联合复现!考虑最优弃能率的风光火储联合系统分层优化经济调度!

前言 目前,尽管不断地追逐可再生能源全额消纳方式,大幅减小弃风弃光电量,但是若考虑风电、光伏发电的随机属性,全额消纳可能造成电网峰谷差、调峰难度及调峰调频等辅助服务费用的剧增,引起电网潜在运行风险。因此&…...

Vue开发前端图片上传给java后端

前端效果图 图片上传演示 1 前端代码 <template><div><!-- 页面标题 --><h1 class"page-title">图片上传演示</h1><div class"upload-container"><!-- 使用 van-uploader 组件进行文件上传&#xff0c;v-model 绑…...

react hooks--useCallback

概述 useCallback缓存的是一个函数&#xff0c;主要用于性能优化!!! 基本用法 如何进行性能的优化呢&#xff1f; useCallback会返回一个函数的 memoized&#xff08;记忆的&#xff09; 值&#xff1b;在依赖不变的情况下&#xff0c;多次定义的时候&#xff0c;返回的值是…...

828华为云征文|华为云Flexus X实例docker部署最新Appsmith社区版,搭建自己的低代码平台

828华为云征文&#xff5c;华为云Flexus X实例docker部署最新Appsmith社区版&#xff0c;搭建自己的低代码平台 华为云最近正在举办828 B2B企业节&#xff0c;Flexus X实例的促销力度非常大&#xff0c;特别适合那些对算力性能有高要求的小伙伴。如果你有自建MySQL、Redis、Ng…...

webservice cxf框架 jaxrs jaxws spring整合 接口测试方法 wsdl报文详解 springboot整合 拦截器 复杂参数类型

webservice cxf框架 jaxrs jaxws spring整合 【java进阶教程之webservice深入浅出【黑马程序员】】 webservice接口测试方法 【SoapUI让你轻松玩转WebService接口测试【特斯汀学院】】 webservice wsdl报文详解 【webservice - 尚硅谷周阳新视频】 webservice springbo…...

2024AI做PPT软件如何重塑演示文稿的创作

现在AI技术的发展已经可以帮我们写作、绘画&#xff0c;最近我发现了不少ai做ppt的工具&#xff01;不体验不知道&#xff0c;原来合理使用AI工具可以有效的帮我们进行一些办公文件的编写&#xff0c;提高了不少工作效率。如果你也有这方面的需求就接着往下看吧。 1.笔灵AIPPT…...

谷神后端list转map

list转map /*** list2map* list转map&#xff1a;支持全量映射、单字段映射。* * param $list:list:列表。* param $key:string:键。* param $field:string:值字段域。** return map**/ #function list2map($list, $key, $field)#if ($vs.util.isList($list) and $vs.util.is…...

Java集合(Map篇)

一.Map a.使用Map i.键值&#xff08;key-value&#xff09;映射表的数据结构&#xff0c;能高效通过key快速查找value&#xff08;元素&#xff09;。 ii.Map是一个接口&#xff0c;最常用的实现类是HashMap。 iii.重复放入k-v不会有问题&#xff0c;但是一个…...

VUE3配置路由(超级详细)

第一步创建vue3的项目...

【笔记】机器学习算法在异常网络流量监测中的应用

先从一些相对简单的综述类看起&#xff0c;顺便学学怎么写摘要相关工作的&#xff0c;边译边学 机器学习算法在异常网络流量监测中的应用 原文&#xff1a;Detecting Network Anomalies in NetFlow Traffic with Machine Learning Algorithms Authors: Quc Vo, Philippe Ea, Os…...

江协科技STM32学习- P15 TIM输出比较

&#x1f680;write in front&#x1f680; &#x1f50e;大家好&#xff0c;我是黄桃罐头&#xff0c;希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流 &#x1f381;欢迎各位→点赞&#x1f44d; 收藏⭐️ 留言&#x1f4dd;​…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强&#xff0c;React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 &#xff08;1&#xff09;使用React Native…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

python爬虫——气象数据爬取

一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用&#xff1a; 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests&#xff1a;发送 …...