当前位置: 首页 > news >正文

【深度学习】(1)--神经网络

文章目录

  • 深度学习
  • 神经网络
    • 1. 感知器
    • 2. 多层感知器
      • 偏置
    • 3. 神经网络的构造
    • 4. 模型训练
      • 损失函数
  • 总结

深度学习

深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向。

在这里插入图片描述

从上方的内容包含结果,我们可以知道,在学习深度学习之前,我们还需要了解一下什么是神经网络。

神经网络

神经网络,我们可以将它类比为人类的神经元,由外界传递信息,产生神经冲动,传递电信号,做出行为的过程。

在这里插入图片描述

这是生物学上的体现,那么,在神经网络中是如何体现的呢?
在这里插入图片描述

由外界传入数据,然后通过“路径”抵达神经元,在每一条的“路径”上会有不同的w参数,与传入的数据进行计算。从而影响接收值:

在这里插入图片描述

在推导式中,每条“路径”上的信息传入神经元,然后对他们进行累加求和,接着经过特定的输出函数sigmoid函数输入,对结果进行分类。

神经网络的本质:通过参数与激活函数来拟合特征与目标之间的真实函数关系。但在一个神经网络的程序中,不需要神经元和线,本质上是矩阵的运算,实现一个神经网络最需要的是线性代数库。

1. 感知器

由两层神经元组成的神经网络–“感知器”(Perceptron),感知器只能线性划分数据。

在这里插入图片描述

对于这样简单的感知器,只能线性划分数据,因为对于神经元的结果,只有y =kx+b一层计算,只可以在二维空间画一条直线划分,这样的话,对于一些区域型的数据无法具体分类,比如:

在这里插入图片描述

对于这组数据的分类,是无法通过一条直线就让它们分开的,那该如何分类N呢?

我们得让分类的线弯曲,比如:

在这里插入图片描述

这样就将类别划分开了。可是,我们该怎样使这条“线”弯曲呢?通过多层感知器。

2. 多层感知器

多层感知器其实就是增加了一个中间层,即隐含层。而这,也就是神经网络可以做非线性分类的关键。

在这里插入图片描述

多层感知器同简单感知器的区别就是多加了1层运算,那这样我们的计算就变成了y=w1x1+w2x2+b,在一个二维图片中,这样的函数计算可以使“线”弯曲,从而实现了非线性分类。

偏置

在神经网络中需要默认增加偏置神经元(节点),这些节点是默认存在的。它本质上是一个只含有存储功能,且存储值永远为1的单元。在神经网络的每个层次中,除了输出层以外,都会含有这样一个偏置单元。

在这里插入图片描述

偏置节点没有输入(前一层中没有箭头指向它)。一般情况下,我们都不会明确画出偏置节点。

3. 神经网络的构造

在这里插入图片描述

神经网络从左到右分为输入层、隐含层、输出层。

需要记忆

  1. 设计一个神经网络时,输入层与输出层的节点数往往是固定的,中间层则可以自由指定
    1. 输入层的节点数:与特征的维度匹配(特征数量)。
    2. 输出层的节点数:与目标的维度匹配(类别结果数量)。
    3. 中间层的节点数:目前业界没有完善的理论来指导这个决策。一般是根据经验来设置。
  2. 神经网络结构图中的拓扑与箭头代表着预测过程时数据的流向,跟训练时的数据流有一定的区别;
  3. 结构图里的关键不是圆圈(代表“神经元”),而是连接线(代表“神经元”之间的连接)。每个连接线对应一个不同的权重(其值称为权值),这是需要训练得到的。

4. 模型训练

模型训练的目的:使得参数尽可能的与真实的模型逼近。

具体做法:

  1. 首先给所有参数赋上随机值。我们使用这些随机生成的参数值,来预测训练数据中的样本。
  2. 计算预测值为yp,真实值为y。那么,定义一个损失值loss,损失值用于判断预测的结果和真实值的误差,误差越小越好。

损失函数

  1. 均方差损失函数

对真实值与预测值作差然后做平方,计算每一条数据的差值平方加起来,然后再除以数据的条数即可得到损失值。

在这里插入图片描述

  1. 多分类的情况下,交叉熵损失函数

运算过程,将一组数据传入:

在这里插入图片描述

公式:

在这里插入图片描述

总结

本篇介绍了:

  1. 神经网络的构造
  2. 神经网络的运行过程
  3. 感知器

相关文章:

【深度学习】(1)--神经网络

文章目录 深度学习神经网络1. 感知器2. 多层感知器偏置 3. 神经网络的构造4. 模型训练损失函数 总结 深度学习 深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向。 从上方的内容包含结果,我们可以知道,在学习深度学…...

测试文件和数据库文件

接口测试 flaks项目入口文件manage.py路由配置 import requests#首先面向对象作封装,避免相同代码反复编写 class HttpApiTest:def test_get(self,url,data{}): #用来测试get方法的接口 #self通过共享self类中间的变量 #url用来请求接口 #data可传可不传res reques…...

redis集群模式连接

目录 一:背景 二:实现过程 三:总结 一:背景 redis集群通过将数据分散存储在多个主节点上,每个主节点可以有多个从节点进行数据的复制,以此来实现数据的高可用性和负载均衡。在集群模式下,客户…...

Linux高级I/O:多路转接模型

目录 一.常见的IO模型介绍二.多路转接I/O1.select1.1.函数解析1.2. select特点和缺点1.3.基于 select 的多客户端网络服务器 2.poll2.1.poll函数解析2.2.poll特点和缺点2.3.基于poll的tcp服务器 3.epoll3.1.系列函数解析3.2.epoll原理解析2.3.基于 select 的多客户端网络服务器…...

MongoDB Limit 与 Skip 方法

MongoDB Limit 与 Skip 方法 MongoDB 是一个流行的 NoSQL 数据库,它提供了灵活的数据存储和强大的查询功能。在处理大量数据时,我们常常需要限制返回的结果数量或者跳过一部分结果,这时就可以使用 MongoDB 的 limit 和 skip 方法。 Limit 方…...

【2025】中医药健康管理小程序(安卓原生开发+用户+管理员)

博主介绍: ✌我是阿龙,一名专注于Java技术领域的程序员,全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师,我在计算机毕业设计开发方面积累了丰富的经验。同时,我也是掘金、华为云、阿里云、InfoQ等平台…...

VulnHub-Bilu_b0x靶机笔记

Bilu_b0x 靶机 概述 Vulnhub 的一个靶机,包含了 sql 注入,文件包含,代码审计,内核提权。整体也是比较简单的内容,和大家一起学习 Billu_b0x.zip 靶机地址: https://pan.baidu.com/s/1VWazR7tpm2xJZIGUS…...

Python | Leetcode Python题解之第421题数组中两个数的最大异或值

题目: 题解: class Trie:def __init__(self):# 左子树指向表示 0 的子节点self.left None# 右子树指向表示 1 的子节点self.right Noneclass Solution:def findMaximumXOR(self, nums: List[int]) -> int:# 字典树的根节点root Trie()# 最高位的二…...

如何将普通Tokenizer变成Fast Tokenizer

现在的huggingface库里面Tokenizer有两种,一种就是普通的,另一种是fast的。fast和普通的区别就是fast使用rust语言编写,在处理大量文本的时候会更快。我自己测试的时候单一一句的话fast要比普通的慢一些,当量叠上来,到…...

联合复现!考虑最优弃能率的风光火储联合系统分层优化经济调度!

前言 目前,尽管不断地追逐可再生能源全额消纳方式,大幅减小弃风弃光电量,但是若考虑风电、光伏发电的随机属性,全额消纳可能造成电网峰谷差、调峰难度及调峰调频等辅助服务费用的剧增,引起电网潜在运行风险。因此&…...

Vue开发前端图片上传给java后端

前端效果图 图片上传演示 1 前端代码 <template><div><!-- 页面标题 --><h1 class"page-title">图片上传演示</h1><div class"upload-container"><!-- 使用 van-uploader 组件进行文件上传&#xff0c;v-model 绑…...

react hooks--useCallback

概述 useCallback缓存的是一个函数&#xff0c;主要用于性能优化!!! 基本用法 如何进行性能的优化呢&#xff1f; useCallback会返回一个函数的 memoized&#xff08;记忆的&#xff09; 值&#xff1b;在依赖不变的情况下&#xff0c;多次定义的时候&#xff0c;返回的值是…...

828华为云征文|华为云Flexus X实例docker部署最新Appsmith社区版,搭建自己的低代码平台

828华为云征文&#xff5c;华为云Flexus X实例docker部署最新Appsmith社区版&#xff0c;搭建自己的低代码平台 华为云最近正在举办828 B2B企业节&#xff0c;Flexus X实例的促销力度非常大&#xff0c;特别适合那些对算力性能有高要求的小伙伴。如果你有自建MySQL、Redis、Ng…...

webservice cxf框架 jaxrs jaxws spring整合 接口测试方法 wsdl报文详解 springboot整合 拦截器 复杂参数类型

webservice cxf框架 jaxrs jaxws spring整合 【java进阶教程之webservice深入浅出【黑马程序员】】 webservice接口测试方法 【SoapUI让你轻松玩转WebService接口测试【特斯汀学院】】 webservice wsdl报文详解 【webservice - 尚硅谷周阳新视频】 webservice springbo…...

2024AI做PPT软件如何重塑演示文稿的创作

现在AI技术的发展已经可以帮我们写作、绘画&#xff0c;最近我发现了不少ai做ppt的工具&#xff01;不体验不知道&#xff0c;原来合理使用AI工具可以有效的帮我们进行一些办公文件的编写&#xff0c;提高了不少工作效率。如果你也有这方面的需求就接着往下看吧。 1.笔灵AIPPT…...

谷神后端list转map

list转map /*** list2map* list转map&#xff1a;支持全量映射、单字段映射。* * param $list:list:列表。* param $key:string:键。* param $field:string:值字段域。** return map**/ #function list2map($list, $key, $field)#if ($vs.util.isList($list) and $vs.util.is…...

Java集合(Map篇)

一.Map a.使用Map i.键值&#xff08;key-value&#xff09;映射表的数据结构&#xff0c;能高效通过key快速查找value&#xff08;元素&#xff09;。 ii.Map是一个接口&#xff0c;最常用的实现类是HashMap。 iii.重复放入k-v不会有问题&#xff0c;但是一个…...

VUE3配置路由(超级详细)

第一步创建vue3的项目...

【笔记】机器学习算法在异常网络流量监测中的应用

先从一些相对简单的综述类看起&#xff0c;顺便学学怎么写摘要相关工作的&#xff0c;边译边学 机器学习算法在异常网络流量监测中的应用 原文&#xff1a;Detecting Network Anomalies in NetFlow Traffic with Machine Learning Algorithms Authors: Quc Vo, Philippe Ea, Os…...

江协科技STM32学习- P15 TIM输出比较

&#x1f680;write in front&#x1f680; &#x1f50e;大家好&#xff0c;我是黄桃罐头&#xff0c;希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流 &#x1f381;欢迎各位→点赞&#x1f44d; 收藏⭐️ 留言&#x1f4dd;​…...

uniapp 对接腾讯云IM群组成员管理(增删改查)

UniApp 实战&#xff1a;腾讯云IM群组成员管理&#xff08;增删改查&#xff09; 一、前言 在社交类App开发中&#xff0c;群组成员管理是核心功能之一。本文将基于UniApp框架&#xff0c;结合腾讯云IM SDK&#xff0c;详细讲解如何实现群组成员的增删改查全流程。 权限校验…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer &#xff08;1&#xff09;资源 论文&a…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...

WEB3全栈开发——面试专业技能点P7前端与链上集成

一、Next.js技术栈 ✅ 概念介绍 Next.js 是一个基于 React 的 服务端渲染&#xff08;SSR&#xff09;与静态网站生成&#xff08;SSG&#xff09; 框架&#xff0c;由 Vercel 开发。它简化了构建生产级 React 应用的过程&#xff0c;并内置了很多特性&#xff1a; ✅ 文件系…...

在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南

在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南 背景介绍完整操作步骤1. 创建Docker容器环境2. 验证GUI显示功能3. 安装ROS Noetic4. 配置环境变量5. 创建ROS节点(小球运动模拟)6. 配置RVIZ默认视图7. 创建启动脚本8. 运行可视化系统效果展示与交互技术解析ROS节点通…...

海云安高敏捷信创白盒SCAP入选《中国网络安全细分领域产品名录》

近日&#xff0c;嘶吼安全产业研究院发布《中国网络安全细分领域产品名录》&#xff0c;海云安高敏捷信创白盒&#xff08;SCAP&#xff09;成功入选软件供应链安全领域产品名录。 在数字化转型加速的今天&#xff0c;网络安全已成为企业生存与发展的核心基石&#xff0c;为了解…...

GeoServer发布PostgreSQL图层后WFS查询无主键字段

在使用 GeoServer&#xff08;版本 2.22.2&#xff09; 发布 PostgreSQL&#xff08;PostGIS&#xff09;中的表为地图服务时&#xff0c;常常会遇到一个小问题&#xff1a; WFS 查询中&#xff0c;主键字段&#xff08;如 id&#xff09;莫名其妙地消失了&#xff01; 即使你在…...

Win系统权限提升篇UAC绕过DLL劫持未引号路径可控服务全检项目

应用场景&#xff1a; 1、常规某个机器被钓鱼后门攻击后&#xff0c;我们需要做更高权限操作或权限维持等。 2、内网域中某个机器被钓鱼后门攻击后&#xff0c;我们需要对后续内网域做安全测试。 #Win10&11-BypassUAC自动提权-MSF&UACME 为了远程执行目标的exe或者b…...