当前位置: 首页 > news >正文

EMT-LTR--学习任务间关系的多目标多任务优化

EMT-LTR–学习任务间关系的多目标多任务优化

title: Learning Task Relationships in Evolutionary Multitasking for Multiobjective Continuous Optimization

author: Zefeng Chen, Yuren Zhou, Xiaoyu He, and Jun Zhang.

journal: IEEE TRANSACTIONS ON CYBERNETICS (TCYB)

DOI:10.1109/TCYB.2020.3029176

code: GitHub - youle921/MultiTask

1.主要贡献:

​ 1)提出了一种学习任务间关系的多目标多任务优化算法(EMT-LTR);

​ 2)采用领域自适应技术将每个任务的决策空间视为一个流形,并将不同任务的所有决策空间联合建模为一个联合流形。

​ 3)将联合流形投影到隐层空间,同时保留所有任务的必要特征和每个流形的拓扑结构。

​ 4)任务关系表示为由多个映射函数组成的联合映射矩阵,学习到的任务关系用于进化过程中不同决策空间之间的信息传递。

2.问题提出:

​ 1)在MTO领域,利用任务间关系的研究很少。

​ 2)当任务数量特别多时,现有的研究通过学习任意两个任务间的映射关系的方式会很复杂。

​ 因此,如何联合建模所有任务之间的关系(而不仅仅是两个任务之间的关系)并有效地利用这些关系,是文章的研究目标。

3.EMT-LTR:

3.1 算法框架

​ 1)对于给定的 K K K个任务 T 1 , T 2 , . . . , T K T_1,T_2,...,T_K T1,T2,...,TK,设置采样集 S 1 , S 2 , . . . , S K S_1,S_2,...,S_K S1,S2,...,SK

​ 2)对这些采样集进行LTR,得到联合映射矩阵 M M M(不同任务间关系),它包含K个映射函数和一个隐层空间。

​ 3)接下来EMT-LTR的步骤跟MO-MFEA相同,不同的是MOMFEA是发生在统一搜索空间中,而EMT-LTR则是隐层空间。

​ 注意:在每一代中,从采样集中学习到的任务关系被用于子代产生和评估阶段,使用下一代种群的个体更新采样集。知识迁移是通过将来自其他任务的精英个体注入到当前任务或交配。

image-20240918091520810 image-20240918091631518

3.2 学习任务间关系(LTR)

​ LTR的总体想法:使用 K K K个采样集 S 1 , S 2 , . . . , S K S_1,S_2,...,S_K S1,S2,...,SK来学习 K K K个优化任务 T 1 , T 2 , . . . , T K T_1,T_2,...,T_K T1,T2,...,TK间的关系。先根据Pareto支配关系与不同目标函数之和两个准则将每个采样集 S k , k = 1 , 2 , . . . , K S_k,k=1,2,...,K Sk,k=1,2,...,K都分成如下四类(此处的分类方式并不唯一)。第一类:前50%非支配解;第二类:后50%非支配解;第三类:前50%支配解;第四类:后50%支配解。

​ 为了更真实地反映这些任务之间地关系,所构造地映射函数应该满足如下几个重要地属性:1)同一类样本点映射到隐层空间的相似位置;2)不同类样本点映射到隐层空间的不同位置且容易区分;3)每个样本集的拓扑结构也需要保留在隐层空间中。

​ 文章使用拉普拉斯矩阵来表示每一个流形(公式3和6),并以此来反映属性1和2;对于属性3,则使用了降维后的联合流形(公式11);并设计了一个包含三个子函数的损失函数。具体细节请查阅原文,LTR的算法伪代码如下所示。

image-20240918091822532

3.3 知识迁移

1)任务间的表示转换:

​ 如下图所示,假设 Ω a , Ω b \Omega_a,\Omega_b Ωa,Ωb是任务 T a , T b T_a,T_b Ta,Tb的决策空间,通过LTR构建映射函数 M a , M b M_a,M_b Ma,Mb。然后,从决策空间到隐层空间的映射可以通过如下规则执行:

X i ∈ Ω a X^i\in \Omega_a XiΩa在隐层空间的表示为 M a T X i M^T_aX^i MaTXi X j ∈ Ω b X^j\in \Omega_b XjΩb在隐层空间的表示为 M b T X j M^T_bX^j MbTXj.

​ 从隐层空间到决策空间的映射可以通过如下规则执行:

X i ∈ Ω a X^i\in \Omega_a XiΩa在隐层空间的表示为 ( M a M b + ) T X i {(M_aM_b^+)}^TX^i (MaMb+)TXi X j ∈ Ω b X^j\in \Omega_b XjΩb在隐层空间的表示为 ( M b M a + ) T X j {(M_bM_a^+)}^TX^j (MbMa+)TXj.

image-20240918153306758

2)任务间知识迁移:首先,从 T a T_a Ta的当前种群中选择一个非支配个体(位于 Ω a \Omega_a Ωa中);然后,通过上述的任务间转换将这个个体转换到 Ω b \Omega_b Ωb中。

​ 注意:从任务 T a T_a Ta中得到的这个转换个体可以注入到任务 T b T_b Tb中,也可以与 T b T_b Tb中的个体进行交配。

3.4 采样集更新

​ 1)预设定一个更新周期 u p up up来表示采样集更新的频率。

​ 2)当更新周期满足时,将任务 T k T_k Tk中通过环境选择保存到下一代种群的个体放入采样集 S k S_k Sk中。如果这些个体不足以填满 S k S_k Sk,则从之前的采样集 S k S_k Sk中随机选择个体补充到 S k S_k Sk中;如果这些个体数目超过了 S k S_k Sk,则随机删除某些个体直到 S k S_k Sk的大小为 S N k SN_k SNk.

4.思考

1)相比于其他直接使用领域自适应的MTO算法,EMT-LTR中提出了将所有任务的决策空间映射到隐层空间,并保留所有任务的必要特征和拓扑结构。假设我们可以通过某种方式找到相似任务,那么EMT-LTR则可以通过所建立的联合流形解决该迁移哪些个体的问题。

2)根据信息论的基础知识我们可以得到,领域自适应方式在映射的过程中会对原始任务造成一些信息损失,如何在保证映射的前提下,减少信息损失也是我们要考虑的一个问题,不仅是多任务优化领域,也包括迁移学习领域。而EMT-LTR则考虑了每个任务的必要特征和拓扑结构等信息,在一定程度上考虑到了映射后的信息损失。

相关文章:

EMT-LTR--学习任务间关系的多目标多任务优化

EMT-LTR–学习任务间关系的多目标多任务优化 title: Learning Task Relationships in Evolutionary Multitasking for Multiobjective Continuous Optimization author: Zefeng Chen, Yuren Zhou, Xiaoyu He, and Jun Zhang. journal: IEE…...

MySQL record 08 part

数据库连接池: Java DataBase Connectivity(Java语言连接数据库) 答: 使用连接池能解决此问题, 连接池,自动分配连接对象,并对闲置的连接进行回收。 常用的数据库连接池: 建立数…...

打造以太坊数据监控利器:InfluxDB与Grafana构建Geth可视化分析平台

前言 以太坊客户端收集大量数据,这些数据可以按时间顺序数据库的形式读取。为了简化监控,这些数据可以输入到数据可视化软件中。在此页面上,将配置 Geth 客户端以将数据推送到 InfluxDB 数据库,并使用 Grafana 来可视化数据。 一…...

对onlyoffice进行定制化开发

基于onlyoffice8.0源码,进行二次开发,可实现包括但不限于以下的功能 1、内容控件的插入 2、内容空间的批量替换 3、插入文本 4、插入图片 5、添加,去除水印 6、修改同时在线人数限制 7、内容域的删除 8、页面UI的定制化 9、新增插件开发 10、…...

使用llama.cpp 在推理MiniCPM-1.2B模型

llama.cpp 是一个开源项目,它允许用户在C中实现与LLaMA(Large Language Model Meta AI)模型的交互。LLaMA模型是由Meta Platforms开发的一种大型语言模型,虽然llama.cpp本身并不包含LLaMA模型的训练代码或模型权重,但它…...

分布式环境中,接口超时重试带来的的幂等问题如何解决?

目录标题 幂等不能解决接口超时吗?幂等的重要性什么是幂等?为什么需要幂等?接口超时了,到底如何处理? 如何设计幂等?幂等设计的基本流程实现幂等的8种方案1.selectinsert主键/唯一索引冲突(常用)2.直接insert 主键…...

设计一个推荐系统:使用协同过滤算法

设计一个推荐系统:使用协同过滤算法 在当今数据驱动的时代,推荐系统已经成为了许多在线平台(如电商、社交媒体和流媒体服务)不可或缺的一部分。推荐系统通过分析用户的行为和偏好,向用户推荐可能感兴趣的内容或产品。本文将详细介绍如何设计一个基于协同过滤算法的推荐系…...

Linux 基本指令(二)

目录 1. more指令 2. less指令(重要) 3. head指令 4. tail指令 5. date指令 (1)可以通过选项来指定格式: ​编辑 (2)在设定时间方面 (3)时间戳 6. cal指令 7. find指令 8. grep指令 9. alias指令 10. zip指令与unzip指令 (1). zip指令 (2). unzip指令…...

Facebook的用户隐私保护:从争议到革新

Facebook早期的数据收集方式引发了隐私担忧。平台的快速增长和用户数据的大规模收集使得隐私问题逐渐显现。尤其是在2018年,剑桥分析事件暴露了数千万用户数据被不当使用的问题。这一事件揭示了Facebook在数据保护方面的严重漏洞,引发了公众对隐私保护的…...

计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-23

计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-23 本期,我们对大语言模型在表情推荐, 软件安全和 自动化软件漏洞检测等方面如何应用,提供几篇最新的参考文章。 1 Semantics Preserving Emoji Recommendation with Large Language Mod…...

C++(学习)2024.9.20

目录 C面向对象的基础知识 this指针 概念 功能 1.类内调用成员 2.区分重名的成员变量和局部变量 3. 链式调用 static关键字 1.静态局部变量 2.静态成员变量 3.静态成员函数 4.单例设计模式 const关键字 1.const修饰成员函数 2.const修饰对象 3.const修饰成员变量…...

让AI激发创作力:OpenAI分享5位专业作家利用ChatGPT写作的案例技巧

大家好,我是木易,一个持续关注AI领域的互联网技术产品经理,国内Top2本科,美国Top10 CS研究生,MBA。我坚信AI是普通人变强的“外挂”,专注于分享AI全维度知识,包括但不限于AI科普,AI工…...

UEFI EDK2框架学习 (一)

01 Shell界面打印 执行qemu指令后 qemu-system-x86_64 -drive ifpflash,formatraw,fileOVMF.fd -nographic -net none出现shell界面 02 在UEFI shell中创建APP 创建SimplestApp文件夹以及SimplestApp.c、SimplestApp.inf cd edk2 mkdir SimplestAppuuidgen // generate …...

基于 BERT 的自定义中文命名实体识别实现

基于 BERT 的自定义中文命名实体识别实现 在自然语言处理中,命名实体识别(Named Entity Recognition,NER)是一项重要的任务,旨在识别文本中的特定实体,如人名、地名、组织机构名等。本文将介绍如何使用 BERT 模型实现自定义中文命名实体识别,并提供详细的代码分析和解读…...

中秋节特别游戏:给玉兔投喂月饼

🖼️ 效果展示 📜 游戏背景 在中秋这个充满诗意的节日里,玉兔因为贪玩被赶下人间。在这个温柔的夜晚,我们希望通过一个小游戏,让玉兔感受到人间的温暖和关怀。🐰🌙 🎮 游戏设计 人…...

python pdf转word或excel

python pdf转word或excel 直接上源码 main import gradio as gr import pdf2docx as p2d import Pdf2Excel as p2e import utils.id.IdUtil as idUtildef convert_pdf_to(pdf_file, pdf_pwd, pdf_to_type):if pdf_to_type "docx":# Convert PDF to DOCXcv p2d.C…...

GNU链接器(LD):位置计数器(.)功能及实例解析

0 参考资料 GNU-LD-v2.30-中文手册.pdf GNU linker.pdf1 前言 一个完整的编译工具链应该包含以下4个部分: (1)编译器 (2)汇编器 (3)链接器 (4)lib库 在GNU工具链中&…...

学习记录:js算法(四十三):翻转二叉树

文章目录 翻转二叉树我的思路网上思路递归栈 总结 翻转二叉树 给你一棵二叉树的根节点 root ,翻转这棵二叉树,并返回其根节点 图一: 图二: 示例 1:(如图一) 输入:root [4,2,7,1…...

关于 SQL 的 JOIN 操作

关于 SQL 的 JOIN 操作 在关系型数据库中,数据通常分布在多个表中。为了进行有效的数据检索,我们需要从不同的表中组合数据,这时就需要使用 JOIN 操作。本文将深入探讨 SQL 中不同类型的 JOIN 及其用法,以帮助你在数据库查询中更…...

聊聊AUTOSAR:基于Vector MICROSAR的TC8测试开发方案

技术背景 车载以太网技术作为汽车智能化和网联化的重要组成部分,正逐步成为现代汽车网络架构的核心,已广泛应用于汽车诊断(如OBD)、ECU软件更新、智能座舱系统、高清摄像头环视泊车系统等多个领域。 在这个过程中,ET…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来&#xf…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...

腾讯云V3签名

想要接入腾讯云的Api,必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口,但总是卡在签名这一步,最后放弃选择SDK,这次终于自己代码实现。 可能腾讯云翻新了接口文档,现在阅读起来,清晰了很多&…...

Web中间件--tomcat学习

Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机,它可以执行Java字节码。Java虚拟机是Java平台的一部分,Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...

uniapp 小程序 学习(一)

利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 :开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置,将微信开发者工具放入到Hbuilder中, 打开后出现 如下 bug 解…...

针对药品仓库的效期管理问题,如何利用WMS系统“破局”

案例: 某医药分销企业,主要经营各类药品的批发与零售。由于药品的特殊性,效期管理至关重要,但该企业一直面临效期问题的困扰。在未使用WMS系统之前,其药品入库、存储、出库等环节的效期管理主要依赖人工记录与检查。库…...