新闻文本分类识别系统Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+TensorFlow+Django网页界面
一、介绍
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集(“体育类”, “财经类”, “房产类”, “家居类”, “教育类”, “科技类”, “时尚类”, “时政类”, “游戏类”, “娱乐类”),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
随着信息技术的迅猛发展,文本数据的生成和传播呈现出指数级增长。这使得从海量文本中提取有价值信息的需求愈发迫切。文本分类作为自然语言处理(NLP)中的一个重要任务,旨在自动识别和分类文本内容,使得用户能够快速获取所需信息并提高信息检索的效率。本项目旨在开发一个中文文本分类识别系统,通过构建高效的模型来实现对不同类别文本的准确识别。
本系统使用Python作为主要开发语言,依托于TensorFlow框架,采用卷积神经网络(CNN)算法模型进行文本分类。我们首先收集了10种不同类型的中文文本数据集,包括体育、财经、房产、家居、教育、科技、时尚、时政、游戏和娱乐等类别。这些数据集为模型的训练提供了丰富的样本,并覆盖了多样化的主题。
在模型训练过程中,经过多轮的迭代,调整超参数与网络结构,最终得到了一个具有较高识别精度的模型。该模型以h5格式保存,便于后续的调用与部署。此外,为了提升用户体验,我们还使用Django框架开发了Web操作界面,使用户能够方便地上传文本,并实时获得其所属类别的识别结果。
本项目不仅展示了深度学习在文本分类领域的应用潜力,还为未来的智能信息处理和检索系统奠定了基础。通过持续优化模型和扩展数据集,我们希望能够进一步提升分类准确率,以满足更广泛的实际需求。
二、系统效果图片展示
三、演示视频 and 完整代码 and 远程安装
地址:https://www.yuque.com/ziwu/yygu3z/dm2c902i8cckeayy
四、卷积神经网络算法介绍
卷积神经网络(CNN)是一种深度学习模型,广泛应用于图像和文本数据的处理。其主要特点包括:
- 局部连接:CNN通过局部感受野的方式连接相邻的神经元,允许网络捕捉局部特征,从而减少参数数量,提高模型的效率。
- 权重共享:在同一卷积层中,使用相同的卷积核(滤波器)处理不同位置的输入,降低了模型复杂度,并增强了模型的泛化能力。
- 多层次特征提取:CNN通过多层结构逐层提取特征,从低级特征(如边缘、角点)到高级特征(如形状、对象),使得模型在面对复杂数据时更具鲁棒性。
- 下采样:通过池化层(如最大池化和平均池化),CNN有效降低了特征图的维度,减少计算量,并增强了模型的平移不变性。
以下是一个使用TensorFlow和Keras构建简单卷积神经网络的代码示例:
import tensorflow as tf
from tensorflow.keras import layers, models# 构建模型
model = models.Sequential([layers.Conv2D(32, (3, 3), activation='relu', input_shape=(64, 64, 3)),layers.MaxPooling2D(pool_size=(2, 2)),layers.Conv2D(64, (3, 3), activation='relu'),layers.MaxPooling2D(pool_size=(2, 2)),layers.Flatten(),layers.Dense(128, activation='relu'),layers.Dense(10, activation='softmax') # 10个类别
])# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])# 模型摘要
model.summary()
此示例中,我们构建了一个简单的卷积神经网络,包含卷积层、池化层和全连接层,适用于图像分类任务。通过这些特征,CNN能够有效处理各种数据,提高模型的性能。
相关文章:

新闻文本分类识别系统Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+TensorFlow+Django网页界面
一、介绍 文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集(“体育类”, “财经类”, “房产类”, “家居类”, “教育类”, “科技类”, “时尚类”, “时政类”, “游戏类”, “娱乐类”),然…...
Java使用Map数据结构配合函数式接口存储方法引用
Java使用Map数据结构配合函数式接口存储方法引用 背景 需求中存在这样一直情况 一个国家下面有很多的州 每个州对应的计算日期方法是不同的 这个时候 就面临 可能会有很多if else 为了后期维护尽量还是不想采用这个方式,那么就可以使用策略模式 但是 使用策略带来的…...
LeetCode:2207. 字符串中最多数目的子序列(Java)
目录 2207. 字符串中最多数目的子序列 题目描述: 实现代码与解析: 遍历: 原理思路: 2207. 字符串中最多数目的子序列 题目描述: 给你一个下标从 0 开始的字符串 text 和另一个下标从 0 开始且长度为 2 的字符串 p…...

win10开机自启动方案总汇
win10开机自启动方案总汇 一、开始文件目录添加二、添加注册表启动程序三、服务启动3.1. 将程序注册为服务使用命令行创建服务设置服务启动类型启动服务 3.2. 使用 Windows 服务管理器配置服务3.3. 删除服务 四、定时任务或程序4.1 设置程序自启动(使用任务计划程序…...

【自动驾驶】基于车辆几何模型的横向控制算法 | Stanley 算法详解与编程实现
写在前面: 🌟 欢迎光临 清流君 的博客小天地,这里是我分享技术与心得的温馨角落。📝 个人主页:清流君_CSDN博客,期待与您一同探索 移动机器人 领域的无限可能。 🔍 本文系 清流君 原创之作&…...
微服务--初识MQ
在微服务架构中,MQ(Message Queue,消息队列)作为一种重要的通信机制,扮演着至关重要的角色。 MQ,即消息队列,是一种在不同服务或系统之间传递消息的中间件。它允许消息的发送者(生产…...

车辆识别数据集,图片数量20500,模型已训练200轮
车辆识别数据集(Vehicle Recognition Dataset, VDRD) 摘要 VDRD 是一个专为车辆识别设计的大规模数据集,它包含了20500张不同类型的汽车、货车、公交车以及其他类型车辆的图像。数据集提供了四种车辆类别:汽车、货车、其他车辆和…...

MES系统如何提升制造企业的运营效率和灵活性
参考拓展:苏州稳联-西门子MES系统-赋能智能制造的核心引擎 制造执行系统(MES)在提升制造企业运营效率和灵活性方面发挥着关键作用。 一、MES系统的基本概念和功能 MES系统是连接企业管理层与生产现场的重要桥梁。它主要负责生产调度、资源管理、质量控制等多个方…...

Nexpose 6.6.270 发布下载,新增功能概览
Nexpose 6.6.270 for Linux & Windows - 漏洞扫描 Rapid7 Vulnerability Management, release Sep 18, 2024 请访问原文链接:https://sysin.org/blog/nexpose-6/,查看最新版。原创作品,转载请保留出处。 作者主页:sysin.or…...
【数据库】sqlite
文章目录 1. 基本概述2. 主要特点3. 应用场景4. 优缺点5. 基本使用示例6. 在编程语言中的使用连接到 SQLite 数据库(如果文件不存在会自动创建)创建表插入数据提交事务查询数据关闭连接 7. 总结 SQLite 是一个轻量级的关系型数据库管理系统(R…...
详解 C++中的模板
目录 前言 一、函数模板 1.定义 2.函数模板的实现 3.模板函数的实例化 4.模板参数的省略 1.函数模板的实参推导 2.类模板的实参推导 3.默认模板参数 4.特殊情况:无法推导的模板 5.推导失败的情况 二、类模板 1.概念和定义 2.类模板定义 3.类模板的使用 4.类模板…...

基于DAMODEL——Faster-RCNN 训练与测试指南
Faster-RCNN 训练与测试指南 前言 今天我们要来实现一个经典的目标检测模型:Faster-Rcnn。我们使用DAMODEL云平台来实现,这是个很强大的云端平台,功能众多,你可以投你所好去进行你想做的事情。 1. 环境与工具准备 1.1 远程连接…...

考研数据结构——C语言实现冒泡排序
冒泡排序是一种简单的排序算法,它重复地遍历要排序的列表,比较每对相邻元素,并在顺序错误的情况下交换它们。这个过程重复进行,直到没有需要交换的元素,这意味着列表已经排序完成。冒泡排序的名字来源于较小的元素会逐…...

labview更换操作系统后打开原VI闪退
labview更换操作系统后打开原VI闪退 问题描述: Windows11由家庭版更换为专业版后,重新安装labview2021,打开原来的项目,项目管理器可以正常打开,但是打开VI却闪退,并报错如下 出现这种原因主要是labview在…...
什么是CAPTCHA?有什么用途?
一、CAPTCHA 的工作原理 CAPTCHA的核心目的是通过呈现人类可以轻松理解但计算机程序难以解决的任务,来阻止恶意的自动化工具。传统的CAPTCHA通过展示扭曲或模糊的文字、图片或者点击操作等,要求用户完成验证任务。这些任务通常需要视觉、听觉或简单的逻辑…...

在虚幻引擎中创建毛发/头发
在虚幻引擎中创建毛发/头发 , 首先开启两个插件 Groom 和 Alembic Groom Importer 打开蒙皮缓存 导出人物模型 将人物导入Blender , 选择需要种植头发的点 指定并选择 点击毛发 这里变成爆炸头了 , 把数量和长度调一下 切换到梳子模式 调整发型 导出为abc , 文件路径不…...

PHP API 框架:构建高效API的利器【电商API接口】
在当今快速发展的互联网时代,API(应用程序编程接口)已成为连接不同应用程序和服务的关键。PHP,作为一种流行的服务器端脚本语言,提供了多种强大的框架来简化API的开发。本文将介绍PHP API框架的重要性,以及…...

transformer模型写诗词
加入会员社群,免费获取本项目数据集和代码:点击进入>> 1. 项目简介 该项目是基于A035-transformer模型的诗词生成系统,旨在通过深度学习技术实现古诗词的自动化创作。项目的背景源自当前自然语言处理领域的迅速发展,特别是…...

[大语言模型-工程实践] 手把手教你-基于Ollama搭建本地个人智能AI助理
[大语言模型-工程实践] 手把手教你-基于Ollama搭建本地个人智能AI助理 Note: 草稿优化中,持续更新,相关代码将统一提供出来~ 1. Ollama简介 Ollama 是一个用于在本地环境中运行和定制大型语言模型的工具。它提供了一个简单而高效的接口,用于…...

开放原子开源基金会OPENATOM
AtomGit_开放原子开源基金会代码托管平台-AtomGit 开放原子开源基金会是致力于推动全球开源事业发展的非营利机构,于 2020 年 6 月在北京成立,由阿里巴巴、百度、华为、浪潮、360、腾讯、招商银行等多家龙头科技企业联合发起。 精选项目: 比…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...

【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...

Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...

AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...

OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...