YOLOv8 OBB win10+ visual 2022移植部署
前言
想做一个目标旋转角度检测的工程,但是网上多少python的,或者linux的。在win10+ visual 2022移植部署,记录一下。
参考 这篇文章没有C++ win10 环境下的部署教程,我相对于是对此做了补充。
1、下载工程
https://github.com/shouxieai/tensorRT_Pro
2 模型导出
- 在 ultralytics/engine/exporter.py 文件中改动一处
# output_names = ["output0", "output1"] if isinstance(self.model, SegmentationModel) else ["output0"]
# dynamic = self.args.dynamic
# if dynamic:
# dynamic = {"images": {0: "batch", 2: "height", 3: "width"}} # shape(1,3,640,640)
# if isinstance(self.model, SegmentationModel):
# dynamic["output0"] = {0: "batch", 2: "anchors"} # shape(1, 116, 8400)
# dynamic["output1"] = {0: "batch", 2: "mask_height", 3: "mask_width"} # shape(1,32,160,160)
# elif isinstance(self.model, DetectionModel):
# dynamic["output0"] = {0: "batch", 2: "anchors"} # shape(1, 84, 8400)
# ========== exporter.py ==========
output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output']
dynamic = self.args.dynamic
if dynamic:dynamic = {'images': {0: 'batch'}} # shape(1,3,640,640)if isinstance(self.model, SegmentationModel):dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 116, 8400)dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)elif isinstance(self.model, DetectionModel):dynamic['output'] = {0: 'batch'} # shape(1, 84, 8400)
- 在 ultralytics/nn/modules/head.py 文件中改动一处
def forward(self, x):"""Concatenates and returns predicted bounding boxes and class probabilities."""bs = x[0].shape[0] # batch sizeangle = torch.cat([self.cv4[i](x[i]).view(bs, self.ne, -1) for i in range(self.nl)], 2) # OBB theta logits# NOTE: set `angle` as an attribute so that `decode_bboxes` could use it.angle = (angle.sigmoid() - 0.25) * math.pi # [-pi/4, 3pi/4]# angle = angle.sigmoid() * math.pi / 2 # [0, pi/2]if not self.training:self.angle = anglex = Detect.forward(self, x)if self.training:return x, angle#return torch.cat([x, angle], 1) if self.export else (torch.cat([x[0], angle], 1), (x[1], angle))return torch.cat([x, angle], 1).permute(0, 2, 1) if self.export else (torch.cat([x[0], angle], 1), (x[1], angle))
在终端执行如下指令即可完成 onnx 导出:
from ultralytics import YOLOmodel = YOLO("yolov8_obb_zwc_0918.pt")success = model.export(format="onnx", dynamic=True, simplify=True)
3 C++
修改一个简单的测试测序,在原工程app_yolo_obb.cpp 的基础上修改如下
#include "trt_builder.hpp"
#include <trt_infer.hpp>
#include <ilogger.hpp>
#include "yolo_obb.hpp"
static const char* dotalabels[] = {"0topleft", "1topright", "2downleft", "3downright", "4top","5right", "6down", "7left", "bridge", "large vehicle","small vehicle", "helicopter", "roundabout", "soccer ball field", "swimming pool"
};
using namespace std;
static vector<cv::Point> xywhr2xyxyxyxy(const YoloOBB::Box& box) {float cos_value = std::cos(box.angle);float sin_value = std::sin(box.angle);float w_2 = box.width / 2, h_2 = box.height / 2;float vec1_x = w_2 * cos_value, vec1_y = w_2 * sin_value;float vec2_x = -h_2 * sin_value, vec2_y = h_2 * cos_value;vector<cv::Point> corners;corners.push_back(cv::Point(box.center_x + vec1_x + vec2_x, box.center_y + vec1_y + vec2_y));corners.push_back(cv::Point(box.center_x + vec1_x - vec2_x, box.center_y + vec1_y - vec2_y));corners.push_back(cv::Point(box.center_x - vec1_x - vec2_x, box.center_y - vec1_y - vec2_y));corners.push_back(cv::Point(box.center_x - vec1_x + vec2_x, box.center_y - vec1_y + vec2_y));return corners;
}
static void test_single_image() {// //----initialauto engine = YoloOBB::create_infer("E:***.trt", // engine file0, // gpu id0.25f, // confidence threshold0.45f, // nms thresholdYoloOBB::NMSMethod::FastGPU, // NMS method, fast GPU / CPU1024, // max objectsfalse // preprocess use multi stream);if (engine == nullptr) {INFOE("Engine is nullptr");return;}//auto files = iLogger::find_files("IMG", "*.jpg;*.jpeg;*.png;*.gif;*.tif");vector<cv::Mat> images;for (int i = 0; i < files.size(); ++i) {auto image = cv::imread(files[i]);images.emplace_back(image);}//for (auto& img : images)//{// cv::imshow("src", img);// cv::waitKey(0);//}for(auto &img:images){cv::Mat image=img ;if (image.empty()) {INFOE("Image is empty");return;}auto boxes = engine->commit(image).get();for (auto& obj : boxes) {uint8_t b, g, r;tie(b, g, r) = iLogger::random_color(obj.class_label);auto corners = xywhr2xyxyxyxy(obj);cv::polylines(image, vector<vector<cv::Point>>{corners}, true, cv::Scalar(b, g, r), 2, 16);auto name = dotalabels[obj.class_label];auto caption = iLogger::format("%s %.2f", name, obj.confidence);int width = cv::getTextSize(caption, 0, 1, 2, nullptr).width + 10;cv::rectangle(image, cv::Point(corners[0].x - 3, corners[0].y - 33), cv::Point(corners[0].x - 3 + width, corners[0].y), cv::Scalar(b, g, r), -1);cv::putText(image, caption, cv::Point(corners[0].x - 3, corners[0].y - 5), 0, 1, cv::Scalar::all(0), 2, 16);}INFO("Save to Result.jpg, %d objects", boxes.size());cv::imwrite("Result.jpg", image);cv::imshow("result", image);cv::waitKey(0);}engine.reset();
}
int main() {test_single_image();return 0;
}
3.1 工程下IMG 文件夹结构(你要测试的图片集合)
3.2 所需要的CPP
3.3 编译& 添加头文件
3.3 .cu的文件需要设置CUDA C/C++ 编译类型
4 结果
5 PS
Cuda 、cudnn 、OpenCV,的配置可以自行百度or参考我的往期文章https://blog.csdn.net/qq_36784503/article/details/138597169
相关文章:

YOLOv8 OBB win10+ visual 2022移植部署
前言 想做一个目标旋转角度检测的工程,但是网上多少python的,或者linux的。在win10 visual 2022移植部署,记录一下。 参考 这篇文章没有C win10 环境下的部署教程,我相对于是对此做了补充。 1、下载工程 https://github.com/sh…...
E+H超声波物位仪FMU42-ATB2A22A
EH超声波物位仪FMU42-ATB2A22A是一款由德国EH(恩德斯豪斯)公司生产的超声波物位计,具有高精度、非接触式测量等特点,广泛应用于液体、浆料和粗料的物位测量。以下是对该产品的详细介绍: 一、产品特点 高精度测量&…...
Linux风险应对策略:保障系统安全的有效措施
Linux作为一种开源操作系统,因其稳定性和安全性被广泛应用于服务器、嵌入式系统和个人电脑等多个领域。然而,随着网络攻击手段的不断演变,Linux系统也面临着各种安全风险。本文将探讨Linux系统的主要风险及其应对策略,帮助用户提升…...

芝法酱学习笔记(0.3)——SpringBoot下使用mybatis做增删改查和报表
零、前言 书接上回,我们搭建了windows下的开发环境,并给出了一个hello world级别的多模块SpringBoot项目。 毕竟java后端开发,离不开数据库的操作,为方便后面内容的讲解,这里再做一期铺垫,core模块下新增一…...

windows msys2 编译x264 32位动态库
一、打开mingw32 查看gcc版本 gcc --version 提示找不到gcc,可以安装gcc pacman -S gcc 二、进入x264-master目录 cd /d/x264-master 执行 ./configure --prefix/d/x264-master/Bin --disable-asm --enable-static --enable-shared --disable-thread其中--disa…...
【pytorch】relu的实现逻辑
笔者最近在尝试实现AlexNet的底层算子,基于pytorch的框架,本文主要记录一下pytorch中是如何实现relu算子的。 首先最外层是位于torch\nn\modules\activation.py,主要代码如下: __constants__ ["inplace"]inplace: bool…...

【Python篇】深入机器学习核心:XGBoost 从入门到实战
文章目录 XGBoost 完整学习指南:从零开始掌握梯度提升1. 前言2. 什么是XGBoost?2.1 梯度提升简介 3. 安装 XGBoost4. 数据准备4.1 加载数据4.2 数据集划分 5. XGBoost 基础操作5.1 转换为 DMatrix 格式5.2 设置参数5.3 模型训练5.4 预测 6. 模型评估7. 超…...

简单学习 原码反码补码 学会了你才是真正的程序员了
一、简单介绍原码反码补码 首先我们需要知道的是原码反码补码是一个人为的行为,因为机器看的都是所谓的补码,这个反码只是作为补码的到原码也就是人能看懂的跳板,所以计算机无论是计算器里面的东西还是他底层运行的二进制代码都是补码&#x…...
基于规则的命名实体识别
基于规则的命名实体识别(Rule-Based Named Entity Recognition, NER)是一种通过预定义的模式或规则来识别文本中特定实体的方法。这种方法通常使用正则表达式来匹配文本中的实体。下面是一个更完整的示例,展示了如何使用正则表达式来识别文本…...
C语言从头学63—学习头文件stdlib.h(二)
6、随机数函数rand() 功能:产生0~RAND_MAX 之间的随机整数。 使用格式:rand(); //无参 返回值:返回随机整数 说明: a.RAND_MAX是一个定义在stdlib.h里面的宏,表示可以产生的最大随机整数&am…...
js判断一个对象里有没有某个属性
1. 使用in操作符 in操作符可以用来检测属性是否存在于对象或其原型链中。 const obj {a: 1, b: 2}; if (a in obj) { console.log(属性a存在于obj中); } else { console.log(属性a不存在于obj中); } 2. 使用hasOwnProperty()方法 hasOwnProperty()方法用来检测一个…...
Python(爬虫)正则表达式
正则表达式是文本匹配模式,也就是按照固定模式匹配文本 一、导入 re模块是Python环境的内置模块,所以无需手动安装。直接在文件中导入即可: import re 二、正则表达式基础知识 . 匹配除换行符以外的任意字符 ^ 匹配字符串的开始 $ 匹配字…...

Linux:进程(二)
目录 一、cwd的理解 二、fork的理解 1.代码共享 2.各司其职 3.fork的返回值 三、进程状态 1.进程排队 2.进程状态 运行状态 阻塞状态 挂起状态 一、cwd的理解 cwd(current working directory)。译为当前工作目录。 在C语言中,使用…...

【UE5】将2D切片图渲染为体积纹理,最终实现使用RT实时绘制体积纹理【第二篇-着色器制作】
在上一篇文章中,我们已经理顺了实现流程。 接下来,我们将在UE5中,从头开始一步一步地构建一次流程。 通过这种方法,我们可以借助一个熟悉的开发环境,使那些对着色器不太熟悉的朋友们更好地理解着色器的工作原理。 这篇…...

【OceanBase 诊断调优】—— GC问题根因分析
GC 流程涉及到 RS 的状态切换和 LS 的资源安全回收,流程上较长。且 GC 线程每个租户仅有一个,某个日志流 GC Hang 死时会卡住所有其余日志流的 GC,进而造成更大的影响。 本文档会帮助大家快速定位到 GC 故障的模块,直达问题核心。…...

图像面积计算一般方法及MATLAB实现
一、引言 在数字图像处理中,经常需要获取感兴趣区域的面积属性,下面给出图像处理的一般步骤。 1.读入的彩色图像 2.将彩色图像转化为灰度图像 3.灰度图像转化为二值图像 4.区域标记 5.对每个区域的面积进行计算和显示 二、程序代码 %面积计算 cle…...

指挥平台在应急场所中的主要表现有哪些
在应对自然灾害、公共安全事件等突发危机时,指挥平台作为应急管理体系的核心枢纽,其重要性不言而喻。它不仅承载着信息的快速汇聚、精准分析与高效调度功能,更在应急场所中有一定的关键表现。接下来就跟着北京嘉德立一起了解一下。 一、信息集…...

智能养殖场人机交互检测系统源码分享
智能养殖场人机交互检测检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of Co…...

数据集-目标检测系列-海洋鱼类检测数据集 fish>> DataBall
数据集-目标检测系列-海洋鱼类检测数据集 fish>> DataBall 数据集-目标检测系列-海洋鱼类检测数据集 fish 数据量:1W 数据项目地址: gitcode: https://gitcode.com/DataBall/DataBall-detections-100s/overview github: https://github.com/…...

网络威慑战略带来的影响
文章目录 前言一、网络威慑的出现1、人工智能带来的机遇二、网络空间的威慑困境1、威慑概念的提出2、网络威慑的限度3、人类对网络威胁的认知变化4、网络空间的脆弱性总结前言 网络威慑是国家为应对网络空间风险和威胁而采取的战略。冷战时期核威慑路径难以有效复制至网络空间…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...

CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
聊一聊接口测试的意义有哪些?
目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

云原生安全实战:API网关Kong的鉴权与限流详解
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关(API Gateway) API网关是微服务架构中的核心组件,负责统一管理所有API的流量入口。它像一座…...