当前位置: 首页 > news >正文

YOLOv8 OBB win10+ visual 2022移植部署

前言

想做一个目标旋转角度检测的工程,但是网上多少python的,或者linux的。在win10+ visual 2022移植部署,记录一下。
参考 这篇文章没有C++ win10 环境下的部署教程,我相对于是对此做了补充。

1、下载工程

https://github.com/shouxieai/tensorRT_Pro

2 模型导出

  1. 在 ultralytics/engine/exporter.py 文件中改动一处
    在这里插入图片描述
# output_names = ["output0", "output1"] if isinstance(self.model, SegmentationModel) else ["output0"]
# dynamic = self.args.dynamic
# if dynamic:
#     dynamic = {"images": {0: "batch", 2: "height", 3: "width"}}  # shape(1,3,640,640)
#     if isinstance(self.model, SegmentationModel):
#         dynamic["output0"] = {0: "batch", 2: "anchors"}  # shape(1, 116, 8400)
#         dynamic["output1"] = {0: "batch", 2: "mask_height", 3: "mask_width"}  # shape(1,32,160,160)
#     elif isinstance(self.model, DetectionModel):
#         dynamic["output0"] = {0: "batch", 2: "anchors"}  # shape(1, 84, 8400)
# ========== exporter.py ==========
output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output']
dynamic = self.args.dynamic
if dynamic:dynamic = {'images': {0: 'batch'}}  # shape(1,3,640,640)if isinstance(self.model, SegmentationModel):dynamic['output0'] = {0: 'batch', 2: 'anchors'}  # shape(1, 116, 8400)dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'}  # shape(1,32,160,160)elif isinstance(self.model, DetectionModel):dynamic['output'] = {0: 'batch'}  # shape(1, 84, 8400)
  1. 在 ultralytics/nn/modules/head.py 文件中改动一处
    在这里插入图片描述
def forward(self, x):"""Concatenates and returns predicted bounding boxes and class probabilities."""bs = x[0].shape[0]  # batch sizeangle = torch.cat([self.cv4[i](x[i]).view(bs, self.ne, -1) for i in range(self.nl)], 2)  # OBB theta logits# NOTE: set `angle` as an attribute so that `decode_bboxes` could use it.angle = (angle.sigmoid() - 0.25) * math.pi  # [-pi/4, 3pi/4]# angle = angle.sigmoid() * math.pi / 2  # [0, pi/2]if not self.training:self.angle = anglex = Detect.forward(self, x)if self.training:return x, angle#return torch.cat([x, angle], 1) if self.export else (torch.cat([x[0], angle], 1), (x[1], angle))return torch.cat([x, angle], 1).permute(0, 2, 1) if self.export else (torch.cat([x[0], angle], 1), (x[1], angle))

在终端执行如下指令即可完成 onnx 导出:

from ultralytics import YOLOmodel = YOLO("yolov8_obb_zwc_0918.pt")success = model.export(format="onnx", dynamic=True, simplify=True)

在这里插入图片描述

3 C++

修改一个简单的测试测序,在原工程app_yolo_obb.cpp 的基础上修改如下

#include "trt_builder.hpp"
#include <trt_infer.hpp>
#include <ilogger.hpp>
#include "yolo_obb.hpp"
static const char* dotalabels[] = {"0topleft", "1topright", "2downleft", "3downright", "4top","5right", "6down", "7left", "bridge", "large vehicle","small vehicle", "helicopter", "roundabout", "soccer ball field", "swimming pool"
};
using namespace std;
static vector<cv::Point> xywhr2xyxyxyxy(const YoloOBB::Box& box) {float cos_value = std::cos(box.angle);float sin_value = std::sin(box.angle);float w_2 = box.width / 2, h_2 = box.height / 2;float vec1_x = w_2 * cos_value, vec1_y = w_2 * sin_value;float vec2_x = -h_2 * sin_value, vec2_y = h_2 * cos_value;vector<cv::Point> corners;corners.push_back(cv::Point(box.center_x + vec1_x + vec2_x, box.center_y + vec1_y + vec2_y));corners.push_back(cv::Point(box.center_x + vec1_x - vec2_x, box.center_y + vec1_y - vec2_y));corners.push_back(cv::Point(box.center_x - vec1_x - vec2_x, box.center_y - vec1_y - vec2_y));corners.push_back(cv::Point(box.center_x - vec1_x + vec2_x, box.center_y - vec1_y + vec2_y));return corners;
}
static void test_single_image() {//    //----initialauto engine = YoloOBB::create_infer("E:***.trt",            // engine file0,                                      // gpu id0.25f,                                  // confidence threshold0.45f,                                  // nms thresholdYoloOBB::NMSMethod::FastGPU,            // NMS method, fast GPU / CPU1024,                                   // max objectsfalse                                   // preprocess use multi stream);if (engine == nullptr) {INFOE("Engine is nullptr");return;}//auto files = iLogger::find_files("IMG", "*.jpg;*.jpeg;*.png;*.gif;*.tif");vector<cv::Mat> images;for (int i = 0; i < files.size(); ++i) {auto image = cv::imread(files[i]);images.emplace_back(image);}//for (auto& img : images)//{//    cv::imshow("src", img);//    cv::waitKey(0);//}for(auto &img:images){cv::Mat image=img ;if (image.empty()) {INFOE("Image is empty");return;}auto boxes = engine->commit(image).get();for (auto& obj : boxes) {uint8_t b, g, r;tie(b, g, r) = iLogger::random_color(obj.class_label);auto corners = xywhr2xyxyxyxy(obj);cv::polylines(image, vector<vector<cv::Point>>{corners}, true, cv::Scalar(b, g, r), 2, 16);auto name = dotalabels[obj.class_label];auto caption = iLogger::format("%s %.2f", name, obj.confidence);int width = cv::getTextSize(caption, 0, 1, 2, nullptr).width + 10;cv::rectangle(image, cv::Point(corners[0].x - 3, corners[0].y - 33), cv::Point(corners[0].x - 3 + width, corners[0].y), cv::Scalar(b, g, r), -1);cv::putText(image, caption, cv::Point(corners[0].x - 3, corners[0].y - 5), 0, 1, cv::Scalar::all(0), 2, 16);}INFO("Save to Result.jpg, %d objects", boxes.size());cv::imwrite("Result.jpg", image);cv::imshow("result", image);cv::waitKey(0);}engine.reset();  
}
int main() {test_single_image();return 0;
}

3.1 工程下IMG 文件夹结构(你要测试的图片集合)

在这里插入图片描述

3.2 所需要的CPP

在这里插入图片描述

3.3 编译& 添加头文件

在这里插入图片描述

在这里插入图片描述

3.3 .cu的文件需要设置CUDA C/C++ 编译类型

在这里插入图片描述

4 结果

在这里插入图片描述

在这里插入图片描述

5 PS

Cuda 、cudnn 、OpenCV,的配置可以自行百度or参考我的往期文章https://blog.csdn.net/qq_36784503/article/details/138597169

相关文章:

YOLOv8 OBB win10+ visual 2022移植部署

前言 想做一个目标旋转角度检测的工程&#xff0c;但是网上多少python的&#xff0c;或者linux的。在win10 visual 2022移植部署&#xff0c;记录一下。 参考 这篇文章没有C win10 环境下的部署教程&#xff0c;我相对于是对此做了补充。 1、下载工程 https://github.com/sh…...

E+H超声波物位仪FMU42-ATB2A22A

EH超声波物位仪FMU42-ATB2A22A是一款由德国EH&#xff08;恩德斯豪斯&#xff09;公司生产的超声波物位计&#xff0c;具有高精度、非接触式测量等特点&#xff0c;广泛应用于液体、浆料和粗料的物位测量。以下是对该产品的详细介绍&#xff1a; 一、产品特点 高精度测量&…...

Linux风险应对策略:保障系统安全的有效措施

Linux作为一种开源操作系统&#xff0c;因其稳定性和安全性被广泛应用于服务器、嵌入式系统和个人电脑等多个领域。然而&#xff0c;随着网络攻击手段的不断演变&#xff0c;Linux系统也面临着各种安全风险。本文将探讨Linux系统的主要风险及其应对策略&#xff0c;帮助用户提升…...

芝法酱学习笔记(0.3)——SpringBoot下使用mybatis做增删改查和报表

零、前言 书接上回&#xff0c;我们搭建了windows下的开发环境&#xff0c;并给出了一个hello world级别的多模块SpringBoot项目。 毕竟java后端开发&#xff0c;离不开数据库的操作&#xff0c;为方便后面内容的讲解&#xff0c;这里再做一期铺垫&#xff0c;core模块下新增一…...

windows msys2 编译x264 32位动态库

一、打开mingw32 查看gcc版本 gcc --version 提示找不到gcc&#xff0c;可以安装gcc pacman -S gcc 二、进入x264-master目录 cd /d/x264-master 执行 ./configure --prefix/d/x264-master/Bin --disable-asm --enable-static --enable-shared --disable-thread其中--disa…...

【pytorch】relu的实现逻辑

笔者最近在尝试实现AlexNet的底层算子&#xff0c;基于pytorch的框架&#xff0c;本文主要记录一下pytorch中是如何实现relu算子的。 首先最外层是位于torch\nn\modules\activation.py&#xff0c;主要代码如下&#xff1a; __constants__ ["inplace"]inplace: bool…...

【Python篇】深入机器学习核心:XGBoost 从入门到实战

文章目录 XGBoost 完整学习指南&#xff1a;从零开始掌握梯度提升1. 前言2. 什么是XGBoost&#xff1f;2.1 梯度提升简介 3. 安装 XGBoost4. 数据准备4.1 加载数据4.2 数据集划分 5. XGBoost 基础操作5.1 转换为 DMatrix 格式5.2 设置参数5.3 模型训练5.4 预测 6. 模型评估7. 超…...

简单学习 原码反码补码 学会了你才是真正的程序员了

一、简单介绍原码反码补码 首先我们需要知道的是原码反码补码是一个人为的行为&#xff0c;因为机器看的都是所谓的补码&#xff0c;这个反码只是作为补码的到原码也就是人能看懂的跳板&#xff0c;所以计算机无论是计算器里面的东西还是他底层运行的二进制代码都是补码&#x…...

基于规则的命名实体识别

基于规则的命名实体识别&#xff08;Rule-Based Named Entity Recognition, NER&#xff09;是一种通过预定义的模式或规则来识别文本中特定实体的方法。这种方法通常使用正则表达式来匹配文本中的实体。下面是一个更完整的示例&#xff0c;展示了如何使用正则表达式来识别文本…...

C语言从头学63—学习头文件stdlib.h(二)

6、随机数函数rand() 功能&#xff1a;产生0~RAND_MAX 之间的随机整数。 使用格式&#xff1a;rand(); //无参 返回值&#xff1a;返回随机整数 说明&#xff1a; a.RAND_MAX是一个定义在stdlib.h里面的宏&#xff0c;表示可以产生的最大随机整数&am…...

js判断一个对象里有没有某个属性

1. 使用in操作符 in操作符可以用来检测属性是否存在于对象或其原型链中。 const obj {a: 1, b: 2}; if (a in obj) { console.log(属性a存在于obj中); } else { console.log(属性a不存在于obj中); } 2. 使用hasOwnProperty()方法 hasOwnProperty()方法用来检测一个…...

Python(爬虫)正则表达式

正则表达式是文本匹配模式&#xff0c;也就是按照固定模式匹配文本 一、导入 re模块是Python环境的内置模块&#xff0c;所以无需手动安装。直接在文件中导入即可&#xff1a; import re 二、正则表达式基础知识 . 匹配除换行符以外的任意字符 ^ 匹配字符串的开始 $ 匹配字…...

Linux:进程(二)

目录 一、cwd的理解 二、fork的理解 1.代码共享 2.各司其职 3.fork的返回值 三、进程状态 1.进程排队 2.进程状态 运行状态 阻塞状态 挂起状态 一、cwd的理解 cwd&#xff08;current working directory&#xff09;。译为当前工作目录。 在C语言中&#xff0c;使用…...

【UE5】将2D切片图渲染为体积纹理,最终实现使用RT实时绘制体积纹理【第二篇-着色器制作】

在上一篇文章中&#xff0c;我们已经理顺了实现流程。 接下来&#xff0c;我们将在UE5中&#xff0c;从头开始一步一步地构建一次流程。 通过这种方法&#xff0c;我们可以借助一个熟悉的开发环境&#xff0c;使那些对着色器不太熟悉的朋友们更好地理解着色器的工作原理。 这篇…...

【OceanBase 诊断调优】—— GC问题根因分析

GC 流程涉及到 RS 的状态切换和 LS 的资源安全回收&#xff0c;流程上较长。且 GC 线程每个租户仅有一个&#xff0c;某个日志流 GC Hang 死时会卡住所有其余日志流的 GC&#xff0c;进而造成更大的影响。 本文档会帮助大家快速定位到 GC 故障的模块&#xff0c;直达问题核心。…...

图像面积计算一般方法及MATLAB实现

一、引言 在数字图像处理中&#xff0c;经常需要获取感兴趣区域的面积属性&#xff0c;下面给出图像处理的一般步骤。 1.读入的彩色图像 2.将彩色图像转化为灰度图像 3.灰度图像转化为二值图像 4.区域标记 5.对每个区域的面积进行计算和显示 二、程序代码 %面积计算 cle…...

指挥平台在应急场所中的主要表现有哪些

在应对自然灾害、公共安全事件等突发危机时&#xff0c;指挥平台作为应急管理体系的核心枢纽&#xff0c;其重要性不言而喻。它不仅承载着信息的快速汇聚、精准分析与高效调度功能&#xff0c;更在应急场所中有一定的关键表现。接下来就跟着北京嘉德立一起了解一下。 一、信息集…...

智能养殖场人机交互检测系统源码分享

智能养殖场人机交互检测检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of Co…...

数据集-目标检测系列-海洋鱼类检测数据集 fish>> DataBall

数据集-目标检测系列-海洋鱼类检测数据集 fish>> DataBall 数据集-目标检测系列-海洋鱼类检测数据集 fish 数据量&#xff1a;1W 数据项目地址&#xff1a; gitcode: https://gitcode.com/DataBall/DataBall-detections-100s/overview github: https://github.com/…...

网络威慑战略带来的影响

文章目录 前言一、网络威慑的出现1、人工智能带来的机遇二、网络空间的威慑困境1、威慑概念的提出2、网络威慑的限度3、人类对网络威胁的认知变化4、网络空间的脆弱性总结前言 网络威慑是国家为应对网络空间风险和威胁而采取的战略。冷战时期核威慑路径难以有效复制至网络空间…...

决策树算法在机器学习中的应用

决策树算法在机器学习中的应用 决策树&#xff08;Decision Tree&#xff09;算法是一种基本的分类与回归方法&#xff0c;它通过树状结构对数据进行建模&#xff0c;以解决分类和回归问题。决策树算法在机器学习中具有广泛的应用&#xff0c;其直观性、易于理解和实现的特点使…...

Leetcode面试经典150题-39.组合总数进阶:40.组合总和II

本题是扩展题&#xff0c;真实考过&#xff0c;看这个题之前先看一下39题 Leetcode面试经典150题-39.组合总数-CSDN博客 给定一个候选人编号的集合 candidates 和一个目标数 target &#xff0c;找出 candidates 中所有可以使数字和为 target 的组合。 candidates 中的每个数…...

ProcessOn为什么导出有水印!!!(利用SVG转PNG)

processon-svg2png ProcessOn 一个非常好用的思维导图网站&#xff0c;但是为什么导出有水印&#xff01;&#xff01;&#xff01;。 功能 支持按钮拖拽支持将流程图svg 转成 png下载支持修改自定义文字下载svg&#xff08;开发中&#xff09; 安装/使用方法 安装并使用…...

插入、更新与删除MySQL记录

在现代应用开发中,数据库操作是非常重要的一环。作为程序员,熟练掌握数据库的增删改功能,能够更有效地管理数据并提高开发效率。 本课程将围绕插入、更新与删除记录这三个操作展开,涵盖SQL中的常见语句:INSERT INTO、UPDATE 和 DELETE,并结合实际应用中的常见问题讨论如…...

【ARM】armv8的虚拟化深度解读

Type-1 hypervisor Type-1虚拟化也叫做Bare metal, standalone, Type1 Type2 hypervisor Type-2虚拟化也叫做hosted, Type-2 VM和vCPU(虚拟机和虚拟cpu) 在一个VM&#xff08;虚拟机&#xff09;中有多个vCPU&#xff0c;多个vCPU可能属于同一个Vritual Processor。 EL2…...

9/24作业

1. 分文件编译 分什么要分文件编译&#xff1f; 防止主文件过大&#xff0c;不好修改&#xff0c;简化编译流程 1) 分那些文件 头文件&#xff1a;所有需要提前导入的库文件&#xff0c;函数声明 功能函数&#xff1a;所有功能函数的定义 主函数&#xff1a;main函数&…...

Leetcode 106. 从中序与后序遍历序列构造二叉树

给定两个整数数组 inorder 和 postorder &#xff0c;其中 inorder 是二叉树的中序遍历&#xff0c; postorder 是同一棵树的后序遍历&#xff0c;请你构造并返回这颗 二叉树 。 示例 1: 输入&#xff1a;inorder [9,3,15,20,7], postorder [9,15,7,20,3] 输出&#xff1a;[3…...

针对考研的C语言学习(定制化快速掌握重点1)

1.printf函数的几个要点 printf函数中所有的输出都是右对齐的&#xff0c;除非在%后面添加负号&#xff0c;则表示左对齐 #include<stdio.h> int main() {int num 10;int nums 100;float f 1000.2333333333;printf("%3d\n", nums);//%3d表示输出的总宽度至…...

【大数据入门 | Hive】DDL数据定义语言(数据库DataBase)

1. 数据库(DataBase) 1.1 创建数据库 语法&#xff1a; CREATE DATABASE [IF NOT EXISTS] database_name [COMMENT database_comment] [LOCATION hdfs_path] [WITH DBPROPERTIES (property_nameproperty_value, ...)]; 案例&#xff1a; &#xff08;1&#xff09;创建一个…...

CNVD漏洞和证书挖掘经验总结

前言 本篇文章主要是分享一下本人挖掘CVND漏洞碰到的一些问题&#xff0c;根据过往成功归档的漏洞和未归档的漏洞总结出的经验&#xff0c;也确实给审核的大佬们添了很多麻烦&#xff08;主要真的没人教一下&#xff0c;闷着头尝试犯了好很多错误&#xff0c;希望各位以后交一个…...