【pytorch】relu的实现逻辑
笔者最近在尝试实现AlexNet的底层算子,基于pytorch的框架,本文主要记录一下pytorch中是如何实现relu算子的。
首先最外层是位于torch\nn\modules\activation.py,主要代码如下:
__constants__ = ["inplace"]inplace: booldef __init__(self, inplace: bool = False):super().__init__()self.inplace = inplacedef forward(self, input: Tensor) -> Tensor:return F.relu(input, inplace=self.inplace)def extra_repr(self) -> str:inplace_str = "inplace=True" if self.inplace else ""return inplace_str
调用的是位于torch\nn\functional.py的如下代码:
def relu(input: Tensor, inplace: bool = False) -> Tensor: # noqa: D400,D402r"""relu(input, inplace=False) -> TensorApplies the rectified linear unit function element-wise. See:class:`~torch.nn.ReLU` for more details."""if has_torch_function_unary(input):return handle_torch_function(relu, (input,), input, inplace=inplace)if inplace:result = torch.relu_(input)else:result = torch.relu(input)return result
然后调用的是aten\src\ATen\native\Activation.cpp的如下代码:
Tensor relu(const Tensor & self) {TORCH_CHECK(self.scalar_type() != at::kBool, "Boolean inputs not supported for relu");return at::clamp_min(self, 0);
}
可以看到,主要就是一个大小的比较。
pytorch调试工具
先说问题,只能看到python的处理逻辑,不能看到底层的C++的处理逻辑。
如何使用,参考的是这篇文章。注意,pdb虽然是python内置的包,但是仍然需要通过import pdb导入才能使用。
还有一个问题就是,pytorch是如何通过python代码调用C++代码的,留到下一篇博文更新。
相关文章:
【pytorch】relu的实现逻辑
笔者最近在尝试实现AlexNet的底层算子,基于pytorch的框架,本文主要记录一下pytorch中是如何实现relu算子的。 首先最外层是位于torch\nn\modules\activation.py,主要代码如下: __constants__ ["inplace"]inplace: bool…...
【Python篇】深入机器学习核心:XGBoost 从入门到实战
文章目录 XGBoost 完整学习指南:从零开始掌握梯度提升1. 前言2. 什么是XGBoost?2.1 梯度提升简介 3. 安装 XGBoost4. 数据准备4.1 加载数据4.2 数据集划分 5. XGBoost 基础操作5.1 转换为 DMatrix 格式5.2 设置参数5.3 模型训练5.4 预测 6. 模型评估7. 超…...
简单学习 原码反码补码 学会了你才是真正的程序员了
一、简单介绍原码反码补码 首先我们需要知道的是原码反码补码是一个人为的行为,因为机器看的都是所谓的补码,这个反码只是作为补码的到原码也就是人能看懂的跳板,所以计算机无论是计算器里面的东西还是他底层运行的二进制代码都是补码&#x…...
基于规则的命名实体识别
基于规则的命名实体识别(Rule-Based Named Entity Recognition, NER)是一种通过预定义的模式或规则来识别文本中特定实体的方法。这种方法通常使用正则表达式来匹配文本中的实体。下面是一个更完整的示例,展示了如何使用正则表达式来识别文本…...
C语言从头学63—学习头文件stdlib.h(二)
6、随机数函数rand() 功能:产生0~RAND_MAX 之间的随机整数。 使用格式:rand(); //无参 返回值:返回随机整数 说明: a.RAND_MAX是一个定义在stdlib.h里面的宏,表示可以产生的最大随机整数&am…...
js判断一个对象里有没有某个属性
1. 使用in操作符 in操作符可以用来检测属性是否存在于对象或其原型链中。 const obj {a: 1, b: 2}; if (a in obj) { console.log(属性a存在于obj中); } else { console.log(属性a不存在于obj中); } 2. 使用hasOwnProperty()方法 hasOwnProperty()方法用来检测一个…...
Python(爬虫)正则表达式
正则表达式是文本匹配模式,也就是按照固定模式匹配文本 一、导入 re模块是Python环境的内置模块,所以无需手动安装。直接在文件中导入即可: import re 二、正则表达式基础知识 . 匹配除换行符以外的任意字符 ^ 匹配字符串的开始 $ 匹配字…...
Linux:进程(二)
目录 一、cwd的理解 二、fork的理解 1.代码共享 2.各司其职 3.fork的返回值 三、进程状态 1.进程排队 2.进程状态 运行状态 阻塞状态 挂起状态 一、cwd的理解 cwd(current working directory)。译为当前工作目录。 在C语言中,使用…...
【UE5】将2D切片图渲染为体积纹理,最终实现使用RT实时绘制体积纹理【第二篇-着色器制作】
在上一篇文章中,我们已经理顺了实现流程。 接下来,我们将在UE5中,从头开始一步一步地构建一次流程。 通过这种方法,我们可以借助一个熟悉的开发环境,使那些对着色器不太熟悉的朋友们更好地理解着色器的工作原理。 这篇…...
【OceanBase 诊断调优】—— GC问题根因分析
GC 流程涉及到 RS 的状态切换和 LS 的资源安全回收,流程上较长。且 GC 线程每个租户仅有一个,某个日志流 GC Hang 死时会卡住所有其余日志流的 GC,进而造成更大的影响。 本文档会帮助大家快速定位到 GC 故障的模块,直达问题核心。…...
图像面积计算一般方法及MATLAB实现
一、引言 在数字图像处理中,经常需要获取感兴趣区域的面积属性,下面给出图像处理的一般步骤。 1.读入的彩色图像 2.将彩色图像转化为灰度图像 3.灰度图像转化为二值图像 4.区域标记 5.对每个区域的面积进行计算和显示 二、程序代码 %面积计算 cle…...
指挥平台在应急场所中的主要表现有哪些
在应对自然灾害、公共安全事件等突发危机时,指挥平台作为应急管理体系的核心枢纽,其重要性不言而喻。它不仅承载着信息的快速汇聚、精准分析与高效调度功能,更在应急场所中有一定的关键表现。接下来就跟着北京嘉德立一起了解一下。 一、信息集…...
智能养殖场人机交互检测系统源码分享
智能养殖场人机交互检测检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of Co…...
数据集-目标检测系列-海洋鱼类检测数据集 fish>> DataBall
数据集-目标检测系列-海洋鱼类检测数据集 fish>> DataBall 数据集-目标检测系列-海洋鱼类检测数据集 fish 数据量:1W 数据项目地址: gitcode: https://gitcode.com/DataBall/DataBall-detections-100s/overview github: https://github.com/…...
网络威慑战略带来的影响
文章目录 前言一、网络威慑的出现1、人工智能带来的机遇二、网络空间的威慑困境1、威慑概念的提出2、网络威慑的限度3、人类对网络威胁的认知变化4、网络空间的脆弱性总结前言 网络威慑是国家为应对网络空间风险和威胁而采取的战略。冷战时期核威慑路径难以有效复制至网络空间…...
决策树算法在机器学习中的应用
决策树算法在机器学习中的应用 决策树(Decision Tree)算法是一种基本的分类与回归方法,它通过树状结构对数据进行建模,以解决分类和回归问题。决策树算法在机器学习中具有广泛的应用,其直观性、易于理解和实现的特点使…...
Leetcode面试经典150题-39.组合总数进阶:40.组合总和II
本题是扩展题,真实考过,看这个题之前先看一下39题 Leetcode面试经典150题-39.组合总数-CSDN博客 给定一个候选人编号的集合 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。 candidates 中的每个数…...
ProcessOn为什么导出有水印!!!(利用SVG转PNG)
processon-svg2png ProcessOn 一个非常好用的思维导图网站,但是为什么导出有水印!!!。 功能 支持按钮拖拽支持将流程图svg 转成 png下载支持修改自定义文字下载svg(开发中) 安装/使用方法 安装并使用…...
插入、更新与删除MySQL记录
在现代应用开发中,数据库操作是非常重要的一环。作为程序员,熟练掌握数据库的增删改功能,能够更有效地管理数据并提高开发效率。 本课程将围绕插入、更新与删除记录这三个操作展开,涵盖SQL中的常见语句:INSERT INTO、UPDATE 和 DELETE,并结合实际应用中的常见问题讨论如…...
【ARM】armv8的虚拟化深度解读
Type-1 hypervisor Type-1虚拟化也叫做Bare metal, standalone, Type1 Type2 hypervisor Type-2虚拟化也叫做hosted, Type-2 VM和vCPU(虚拟机和虚拟cpu) 在一个VM(虚拟机)中有多个vCPU,多个vCPU可能属于同一个Vritual Processor。 EL2…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖
在Vuzix M400 AR智能眼镜的助力下,卢森堡罗伯特舒曼医院(the Robert Schuman Hospitals, HRS)凭借在无菌制剂生产流程中引入增强现实技术(AR)创新项目,荣获了2024年6月7日由卢森堡医院药剂师协会࿰…...
[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】
大家好,我是java1234_小锋老师,看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】,分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...
抽象类和接口(全)
一、抽象类 1.概念:如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象,这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法,包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中,⼀个类如果被 abs…...
Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合
作者:来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布,Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明,Elastic 作为 …...
阿里云Ubuntu 22.04 64位搭建Flask流程(亲测)
cd /home 进入home盘 安装虚拟环境: 1、安装virtualenv pip install virtualenv 2.创建新的虚拟环境: virtualenv myenv 3、激活虚拟环境(激活环境可以在当前环境下安装包) source myenv/bin/activate 此时,终端…...
背包问题双雄:01 背包与完全背包详解(Java 实现)
一、背包问题概述 背包问题是动态规划领域的经典问题,其核心在于如何在有限容量的背包中选择物品,使得总价值最大化。根据物品选择规则的不同,主要分为两类: 01 背包:每件物品最多选 1 次(选或不选&#…...
