SegFormer网络结构的学习和重构
segformer中encoder、decoder的详解。
学习前言
一起来学习Segformer的原理,如果有用的话,请记得点赞+关注哦。
一、Segformer的网络结构图

网络结构:主要由Transformer的编码器和轻量级的多层感知机(MLP)的解码器组成
网络特点:
1、结合了Transformers与轻量级的多层感知机(MLP)解码器。
2、包含一个新颖的分层结构的Transformer编码器,该编码器输出多尺度特征。它不需要位置编码, 因此避免了位置编码的插值,这在测试分辨率与训练时不同的情况下可能会导致性能下降。
3、避免使用复杂的解码器。提议的MLP解码器从不同的层中聚合信息,从而同时结合了局部注意力和全局注意力来呈现强大的表示。
4、设计非常简单和轻量级,这是在Transformers上实现高效分割的关键。
5、SegFormer系列模型从SegFormer-B0到SegFormer-B5有多个版本,与之前的模型相比,它们的性能和效率都有显著的提高。
二、理解各模块的网络结构
encoder:作者设计了一系列的 Mix Transformer encoders (MiT),MiT-B0 到 MiT-B5,结构相同,大小不同,MiT-B0 是最轻量级的,可以用来快速推理,MiT-B5 是最重量级的,可以取得最好的效果。
encoder——OverlapPatchEmbed:通过2D卷积操作将图像分块(4分块)并将其嵌入到指定的维度的模块,通过Hierarchical Feature Representation这种方式,编码器可以同时提供高分辨率的粗糙特征和低分辨率的精细特征,从而更好地捕捉不同尺度的上下文信息。
#block1 对输入图像进行分区,并下采样512, 512, 3 => 128, 128, 32 => 16384, 32self.patch_embed1 = OverlapPatchEmbed(patch_size=7, stride=4, in_chans=in_chans, embed_dim=embed_dims[0])#block2对输入图像进行分区,并下采样,128, 128, 32 => 64, 64, 64 => 4096, 64self.patch_embed2 = OverlapPatchEmbed(patch_size=3, stride=2, in_chans=embed_dims[0], embed_dim=embed_dims[1])#block3对输入图像进行分区,并下采样 64, 64, 64 => 32, 32, 160 => 1024, 160self.patch_embed3 = OverlapPatchEmbed(patch_size=3, stride=2, in_chans=embed_dims[1], embed_dim=embed_dims[2])#block4对输入图像进行分区,并下采样32, 32, 160 => 16, 16, 256 => 256, 256self.patch_embed4 = OverlapPatchEmbed(patch_size=3, stride=2, in_chans=embed_dims[2], embed_dim=embed_dims[3])
encoder——Efficient self-attention:Attention机制(注意力机制),encoder 中计算量最大的就是 self-attention 层模块进行特征特区
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
encoder——Mix FNN:在 FNN (前馈神经网络)中使用了 3x3 的卷积和 MLP,作者认为 position encoding(PE) 来引入局部位置信息在语义分割中是不需要的,所以引入了一个 Mix-FFN,考虑了零填充对位置泄露的影响,直接在 FFN 中使用 3x3 的卷积
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop)
encoder——Overlapped Patch Merging:为了在保持局部连续性的同时获得分层特征图,SegFormer采用了重叠patch merging技术。这种方法通过重叠的patch来合并特征,与不重叠的patch merging相比,可以生成相同大小的特征图,同时更好地保留局部信息。
decoder:本文提出了一个轻量化的全由MLP组成的解码器,之所以可以使用如此简单轻量的decoder是因为本文的分层Transformer编码器比传统的卷积编码器具有更大的有效感受野。
Decoder 的过程:
step 1:将多层级特征输入 MLP 层,来规范通道维度
step 2:将特征图上采样为原图大小的 1/4 大小,concat 起来
step 3:使用一层 MLP 对特征通道聚合
step 4:输出预测 segmentation mask H 4 × W 4 × N
相关文章:
SegFormer网络结构的学习和重构
因为太多的博客并没有深入理解,本文是自己学习后加入自己深入理解的总结记录,方便自己以后查看。 segformer中encoder、decoder的详解。 学习前言 一起来学习Segformer的原理,如果有用的话,请记得点赞关注哦。 一、Segformer的网络结构图 网络结构&…...
ubuntu个人实用配置问题
记录两年前试图用Ubuntu作为自己的日常系统的实际情况 记录时间2022年8月26日 中间连输入法都安装不上。。哈哈又被自己笑到啦! ubuntu 安装 使用市面上的各种 U 盘启动盘制作工具,下载 iso 文件之后将清空指定的 U 盘并制作为启动 U 盘,…...
Xk8s证书续期
Master节点 备份文件 cp -r /etc/kubernetes/ /etc/kubernetes-20211021-bak tar -cvzf kubernetes-20211021-bak.tar.gz /etc/kubernetes-20211021-bak/cp -r ~/.kube/ ~/.kube-20211021-bak tar -cvzf kube-20211021-bak.tar.gz ~/.kube-20211021-bakcp -r /var/lib/kube…...
仓颉编程入门2,启动HTTP服务
上一篇配置了仓颉sdk编译和运行环境,读取一个配置文件,并把配置文件简单解析了一下。 前面读取配置文件,使用File.readFrom(),这个直接把文件全部读取出来,返回一个字节数组。然后又创建一个字节流,给文件…...
Linux驱动开发初识
Linux驱动开发初识 文章目录 Linux驱动开发初识一、驱动的概念1.1 什么是驱动:1.2 驱动的分类: 二、设备的概念2.1 主设备号&次设备号:2.2 设备号的作用: 三、设备驱动整体调用过程3.1 上层用户操控设备的流程:3.2…...
前端面试题(三)
11. Web API 面试题 如何使用 fetch 发起网络请求? fetch 是现代浏览器中用于发起网络请求的原生 API。它返回一个 Promise,默认情况下使用 GET 请求:fetch(https://api.example.com/data).then(response > response.json()).then(data &g…...
骨传导耳机哪个牌子最好用?实测五大实用型骨传导耳机分析!
在快节奏的现代生活中,耳机已成为我们不可或缺的伴侣。无论是在通勤路上、运动时,还是在安静的图书馆,耳机都能为我们提供一片属于自己的音乐天地。然而,长时间使用传统耳机可能会对听力造成损害,尤其是在高音量下。因…...
18.1 k8s服务组件之4大黄金指标讲解
本节重点介绍 : 监控4大黄金指标 Latency:延时Utilization:使用率Saturation:饱和度Errors:错误数或错误率 apiserver指标 400、500错误qps访问延迟队列深度 etcd指标kube-scheduler和kube-controller-manager 监控4大黄金指标 …...
MacOS Catalina 从源码构建Qt6.2开发库之02: 配置QtCreator
安装Qt-creator-5.0.2 在option命令中配置Qt Versions指向 /usr/local/bin/qmake6 Kits选入CLang...
某建筑市场爬虫数据采集逆向分析
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言 目标网站 aHR0cHM6Ly9qenNjLm1vaHVyZC5nb3YuY24vZGF0YS9jb21wYW55P2NvbXBsZXhuYW1lPSVFNiVCMCVCNA 提示:以下是本篇文章正文内容,下面…...
降低存量房贷利率的主要原因和影响
降低存量房贷利率的主要原因和影响可以从以下几个方面来分析: 原因 刺激消费与内需:降低房贷利率可以减少贷款人的月供负担,增加家庭的可支配收入,理论上能刺激消费,促进经济的内循环。在经济面临压力时,这…...
远程桌面连接工具Microsoft Remote Desktop Beta for Mac
Microsoft Remote Desktop Beta for Mac 是一款功能强大的远程桌面连接工具,具有以下功能特点: 软件下载地址 跨平台连接: 允许 Mac 用户轻松连接到运行 Windows 操作系统的计算机,打破了操作系统的界限,无论这些 Wi…...
Linux 之 logrotate 【日志分割】
简介 logrotate 是一个用于管理日志文件的工具。它可以自动对日志文件进行轮转、压缩、删除等操作,以防止日志文件无限增长占用过多磁盘空间。logrotate 通常作为一个守护进程定期运行,也可以通过 cron 任务来调度执行 工作原理 按照配置文件中的规则…...
Canvas简历编辑器-Monorepo+Rspack工程实践
Canvas简历编辑器-MonorepoRspack工程实践 在之前我们围绕Canvas聊了很多代码设计层面的东西,在这里我们聊一下工程实践。在之前的文中我也提到过,因为是本着学习的态度以及对技术的好奇心来做的,所以除了一些工具类的库例如 ArcoDesign、Re…...
uni-app - - - - -vue3使用i18n配置国际化语言
uni-app - - - - -使用i18n配置国际化语言 1. 安装vue-i18n2. 配置文件2.1 创建如下文件2.2 文件配置2.3 main文件导入i18n 3. 页面内使用3.1 template内直接使用3.2 变量接收使用 1. 安装vue-i18n npm install vue-i18n --save2. 配置文件 2.1 创建如下文件 locales文件夹里…...
VSCode好用的插件推荐
1. Chinese 将vscode翻译成简体中文 如果安装了依然是英文,请参考如下方法: ctrlshfitp 2. ESLint 自动检查规范 3. Prettier - Code formatter 可以自动调整代码的缩进、换行和空格,确保代码风格统一。通过配置,Prettier可…...
Linux:八种重定向详解(万字长文警告)
相关阅读Linuxhttps://blog.csdn.net/weixin_45791458/category_12234591.html?spm1001.2014.3001.5482 本文将讨论Linux中的重定向相关问题,在阅读本文前,强烈建议先学习文件描述符的相关内容Linux:文件描述符详解。 重定向分为两类&#x…...
set和map系列容器
前言 学习完二叉搜索树本来是应该直接深化,讲平衡二叉搜索树的。但是在学习它的底层逻辑之前呢,我们先来学学它的应用场面。 set和map的底层不是平衡二叉搜索树而是红黑树,实际上的难度比平衡搜索二叉树大。所以它的底层逻辑会比平衡二叉树更…...
企业告警智策助手 | OPENAIGC开发者大赛企业组AI创作力奖
在第二届拯救者杯OPENAIGC开发者大赛中,涌现出一批技术突出、创意卓越的作品。为了让这些优秀项目被更多人看到,我们特意开设了优秀作品报道专栏,旨在展示其独特之处和开发者的精彩故事。 无论您是技术专家还是爱好者,希望能带给…...
函数组件、Hooks和类组件区别
1. 函数组件(Function Components) 函数组件是接收props并返回React元素的纯JavaScript函数。它们不能拥有自己的状态(state)或生命周期方法,但在React 16.8中引入Hooks之后,这种情况发生了变化。 特点&a…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...
多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
MySQL用户和授权
开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...
Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
FFmpeg:Windows系统小白安装及其使用
一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...
探索Selenium:自动化测试的神奇钥匙
目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...
Bean 作用域有哪些?如何答出技术深度?
导语: Spring 面试绕不开 Bean 的作用域问题,这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开,结合典型面试题及实战场景,帮你厘清重点,打破模板式回答,…...
