动手学深度学习(李沐)PyTorch 第 1 章 引言
在线电子书
深度学习介绍
安装
- 使用conda环境
conda create -n d2l-zh python=3.8 pip
- 安装需要的包
pip install jupyter d2l torch torchvision
- 下载代码并执行
wget https://zh-v2.d2l.ai/d2l-zh.zip
unzip d2l-zh.zip
jupyter notebook
pip install rise
如果不想使用jupyter,可以在电子书每一章节的右上角点击colab
不过需要注意colab没有安装d2l,所以需要安装
笔者安装的版本
conda create -n d2l-zh python=3.9conda install pytorch torchvision torchaudio pytorch-cuda=12.4 -c pytorch -c nvidiaconda install nb_conda_kernelspip install d2ljupyter notebook
机器学习中的关键组件
首先介绍一些核心组件。无论什么类型的机器学习问题,都会遇到这些组件:
1.可以用来学习的数据(data);
2.如何转换数据的模型(model);
3.一个目标函数(objective function),用来量化模型的有效性;
4.调整模型参数以优化目标函数的算法(algorithm)。
数据
当处理图像数据时,每一张单独的照片即为一个样本,它的特征由每个像素数值的有序列表表示。 比如,200200彩色照片由200200*3=120000个数值组成,其中的“3”对应于每个空间位置的红、绿、蓝通道的强度。 再比如,对于一组医疗数据,给定一组标准的特征(如年龄、生命体征和诊断),此数据可以用来尝试预测患者是否会存活
当每个样本的特征类别数量都是相同的时候,其特征向量是固定长度的,这个长度被称为数据的维数(dimensionality)。 固定长度的特征向量是一个方便的属性,它可以用来量化学习大量样本。
然而,并不是所有的数据都可以用“固定长度”的向量表示。 以图像数据为例,如果它们全部来自标准显微镜设备,那么“固定长度”是可取的; 但是如果图像数据来自互联网,它们很难具有相同的分辨率或形状。 这时,将图像裁剪成标准尺寸是一种方法,但这种办法很局限,有丢失信息的风险。 此外,文本数据更不符合“固定长度”的要求。 比如,对于亚马逊等电子商务网站上的客户评论,有些文本数据很简短(比如“好极了”),有些则长篇大论。 与传统机器学习方法相比,深度学习的一个主要优势是可以处理不同长度的数据。
模型
大多数机器学习会涉及到数据的转换。 比如一个“摄取照片并预测笑脸”的系统。再比如通过摄取到的一组传感器读数预测读数的正常与异常程度。 虽然简单的模型能够解决如上简单的问题,但本书中关注的问题超出了经典方法的极限。 深度学习与经典方法的区别主要在于:前者关注的功能强大的模型,这些模型由神经网络错综复杂的交织在一起,包含层层数据转换,因此被称为深度学习(deep learning)。 在讨论深度模型的过程中,本书也将提及一些传统方法
目标函数
在机器学习中,我们需要定义模型的优劣程度的度量,这个度量在大多数情况是“可优化”的,这被称之为目标函数(objective function)。 我们通常定义一个目标函数,并希望优化它到最低点。 因为越低越好,所以这些函数有时被称为损失函数(loss function,或cost function)。
当任务在试图预测数值时,最常见的损失函数是平方误差(squared error),即预测值与实际值之差的平方。 当试图解决分类问题时,最常见的目标函数是最小化错误率,即预测与实际情况不符的样本比例。
通常,损失函数是根据模型参数定义的,并取决于数据集。 在一个数据集上,我们可以通过最小化总损失来学习模型参数的最佳值。 该数据集由一些为训练而收集的样本组成,称为训练数据集(training dataset,或称为训练集(training set))。 然而,在训练数据上表现良好的模型,并不一定在“新数据集”上有同样的性能,这里的“新数据集”通常称为测试数据集(test dataset,或称为测试集(test set))。
优化算法
当我们获得了一些数据源及其表示、一个模型和一个合适的损失函数,接下来就需要一种算法,它能够搜索出最佳参数,以最小化损失函数。 深度学习中,大多流行的优化算法通常基于一种基本方法–梯度下降(gradient descent)。 简而言之,在每个步骤中,梯度下降法都会检查每个参数,看看如果仅对该参数进行少量变动,训练集损失会朝哪个方向移动。 然后,它在可以减少损失的方向上优化参数。
各种机器学习问题
监督学习
监督学习(supervised learning)擅长在“给定输入特征”的情况下预测标签。 每个“特征-标签”对都称为一个样本(example)。 有时,即使标签是未知的,样本也可以指代输入特征。 我们的目标是生成一个模型,能够将任何输入特征映射到标签(即预测)。
1.回归
回归(regression)是最简单的监督学习任务之一。 假设有一组房屋销售数据表格,其中每行对应一个房子,每列对应一个相关的属性,例如房屋的面积、卧室的数量、浴室的数量以及到镇中心的步行距离,等等。 每一行的属性构成了一个房子样本的特征向量。 如果一个人住在纽约或旧金山,而且他不是亚马逊、谷歌、微软或Facebook的首席执行官,那么他家的特征向量(房屋面积,卧室数量,浴室数量,步行距离)可能类似于:[600, 1, 1, 60]。 如果一个人住在匹兹堡,这个特征向量可能更接近[3000, 4, 3, 10]…当人们在市场上寻找新房子时,可能需要估计一栋房子的公平市场价值。 为什么这个任务可以归类为回归问题呢?本质上是输出决定的。 销售价格(即标签)是一个数值。 当标签取任意数值时,我们称之为回归问题,此时的目标是生成一个模型,使它的预测非常接近实际标签值。
2.分类
虽然回归模型可以很好地解决“有多少”的问题,但是很多问题并非如此。 例如,一家银行希望在其移动应用程序中添加支票扫描功能。 具体地说,这款应用程序能够自动理解从图像中看到的文本,并将手写字符映射到对应的已知字符之上。 这种“哪一个”的问题叫做分类(classification)问题。 分类问题希望模型能够预测样本属于哪个类别(category,正式称为类(class))。 例如,手写数字可能有10类,标签被设置为数字0~9。 最简单的分类问题是只有两类,这被称之为二项分类(binomial classification)。 例如,数据集可能由动物图像组成,标签可能是{猫, 狗}两类。 回归是训练一个回归函数来输出一个数值; 分类是训练一个分类器来输出预测的类别。
然而模型怎么判断得出这种“是”或“不是”的硬分类预测呢? 我们可以试着用概率语言来理解模型。 给定一个样本特征,模型为每个可能的类分配一个概率。 比如,之前的猫狗分类例子中,分类器可能会输出图像是猫的概率为0.9。 0.9这个数字表达什么意思呢? 可以这样理解:分类器90%确定图像描绘的是一只猫。 预测类别的概率的大小传达了一种模型的不确定性,本书后面章节将讨论其他运用不确定性概念的算法。
当有两个以上的类别时,我们把这个问题称为多项分类(multiclass classification)问题。 常见的例子包括手写字符识别{0, 1, 2, …, 9, a, b, c, …}。 与解决回归问题不同,分类问题的常见损失函数被称为交叉熵(cross-entropy),本书 3.4节 将详细阐述
现在,我们想要训练一个毒蘑菇检测分类器,根据照片预测蘑菇是否有毒。 假设这个分类器输出 图1.3.2 包含死帽蕈的概率是0.2。 换句话说,分类器80%确定图中的蘑菇不是死帽蕈。 尽管如此,我们也不会吃它,因为不值得冒20%的死亡风险。 换句话说,不确定风险的影响远远大于收益。 因此,我们需要将“预期风险”作为损失函数,即需要将结果的概率乘以与之相关的收益(或伤害)。 在这种情况下,食用蘑菇造成的损失为0.2∞+0.80=∞,而丢弃蘑菇的损失为0.20+0.81=0.8。 事实上,谨慎是有道理的, 图1.3.2中的蘑菇实际上是一个死帽蕈。
分类可能变得比二项分类、多项分类复杂得多。 例如,有一些分类任务的变体可以用于寻找层次结构,层次结构假定在许多类之间存在某种关系。 因此,并不是所有的错误都是均等的。 人们宁愿错误地分入一个相关的类别,也不愿错误地分入一个遥远的类别,这通常被称为层次分类(hierarchical classification)。 早期的一个例子是卡尔·林奈,他对动物进行了层次分类。
3.标记问题
学习预测不相互排斥的类别的问题称为多标签分类(multi-label classification)。 举个例子,人们在技术博客上贴的标签,比如“机器学习”“技术”“小工具”“编程语言”“Linux”“云计算”“AWS”。 一篇典型的文章可能会用5~10个标签,因为这些概念是相互关联的。 关于“云计算”的帖子可能会提到“AWS”,而关于“机器学习”的帖子也可能涉及“编程语言”。
此外,在处理生物医学文献时,我们也会遇到这类问题。 正确地标记文献很重要,有利于研究人员对文献进行详尽的审查。 在美国国家医学图书馆(The United States National Library of Medicine),一些专业的注释员会检查每一篇在PubMed中被索引的文章,以便将其与Mesh中的相关术语相关联(Mesh是一个大约有28000个标签的集合)。 这是一个十分耗时的过程,注释器通常在归档和标记之间有一年的延迟。 这里,机器学习算法可以提供临时标签,直到每一篇文章都有严格的人工审核。 事实上,近几年来,BioASQ组织已经举办比赛来完成这项工作。
4.搜索
有时,我们不仅仅希望输出一个类别或一个实值。 在信息检索领域,我们希望对一组项目进行排序。 以网络搜索为例,目标不是简单的“查询(query)-网页(page)”分类,而是在海量搜索结果中找到用户最需要的那部分。 搜索结果的排序也十分重要,学习算法需要输出有序的元素子集。 换句话说,如果要求我们输出字母表中的前5个字母,返回“A、B、C、D、E”和“C、A、B、E、D”是不同的。 即使结果集是相同的,集内的顺序有时却很重要。
该问题的一种可能的解决方案:首先为集合中的每个元素分配相应的相关性分数,然后检索评级最高的元素。PageRank,谷歌搜索引擎背后最初的秘密武器就是这种评分系统的早期例子,但它的奇特之处在于它不依赖于实际的查询。 在这里,他们依靠一个简单的相关性过滤来识别一组相关条目,然后根据PageRank对包含查询条件的结果进行排序。 如今,搜索引擎使用机器学习和用户行为模型来获取网页相关性得分,很多学术会议也致力于这一主题。
5.推荐系统
另一类与搜索和排名相关的问题是推荐系统(recommender system),它的目标是向特定用户进行“个性化”推荐。 例如,对于电影推荐,科幻迷和喜剧爱好者的推荐结果页面可能会有很大不同。 类似的应用也会出现在零售产品、音乐和新闻推荐等等。
6.序列学习
以上大多数问题都具有固定大小的输入和产生固定大小的输出。 例如,在预测房价的问题中,我们考虑从一组固定的特征:房屋面积、卧室数量、浴室数量、步行到市中心的时间; 图像分类问题中,输入为固定尺寸的图像,输出则为固定数量(有关每一个类别)的预测概率; 在这些情况下,模型只会将输入作为生成输出的“原料”,而不会“记住”输入的具体内容。
如果输入的样本之间没有任何关系,以上模型可能完美无缺。 但是如果输入是连续的,模型可能就需要拥有“记忆”功能。 比如,我们该如何处理视频片段呢? 在这种情况下,每个视频片段可能由不同数量的帧组成。 通过前一帧的图像,我们可能对后一帧中发生的事情更有把握。 语言也是如此,机器翻译的输入和输出都为文字序列。
再比如,在医学上序列输入和输出就更为重要。 设想一下,假设一个模型被用来监控重症监护病人,如果他们在未来24小时内死亡的风险超过某个阈值,这个模型就会发出警报。 我们绝不希望抛弃过去每小时有关病人病史的所有信息,而仅根据最近的测量结果做出预测。
这些问题是序列学习的实例,是机器学习最令人兴奋的应用之一。 序列学习需要摄取输入序列或预测输出序列,或两者兼而有之。 具体来说,输入和输出都是可变长度的序列,例如机器翻译和从语音中转录文本。 虽然不可能考虑所有类型的序列转换,但以下特殊情况值得一提。
无监督学习
相反,如果工作没有十分具体的目标,就需要“自发”地去学习了。 比如,老板可能会给我们一大堆数据,然后要求用它做一些数据科学研究,却没有对结果有要求。 这类数据中不含有“目标”的机器学习问题通常被为无监督学习(unsupervised learning), 本书后面的章节将讨论无监督学习技术。 那么无监督学习可以回答什么样的问题呢?来看看下面的例子。
- 聚类(clustering)问题:没有标签的情况下,我们是否能给数据分类呢?比如,给定一组照片,我们能把它们分成风景照片、狗、婴儿、猫和山峰的照片吗?同样,给定一组用户的网页浏览记录,我们能否将具有相似行为的用户聚类呢?
- 主成分分析(principal component analysis)问题:我们能否找到少量的参数来准确地捕捉数据的线性相关属性?比如,一个球的运动轨迹可以用球的速度、直径和质量来描述。再比如,裁缝们已经开发出了一小部分参数,这些参数相当准确地描述了人体的形状,以适应衣服的需要。另一个例子:在欧几里得空间中是否存在一种(任意结构的)对象的表示,使其符号属性能够很好地匹配?这可以用来描述实体及其关系,例如“罗马” - “意大利” +“法国” =“巴黎”。
- 因果关系(causality)和概率图模型(probabilistic graphical models)问题:我们能否描述观察到的许多数据的根本原因?例如,如果我们有关于房价、污染、犯罪、地理位置、教育和工资的人口统计数据,我们能否简单地根据经验数据发现它们之间的关系?
- 生成对抗性网络(generative adversarial networks):为我们提供一种合成数据的方法,甚至像图像和音频这样复杂的非结构化数据。潜在的统计机制是检查真实和虚假数据是否相同的测试,它是无监督学习的另一个重要而令人兴奋的领域。
与环境互动
有人一直心存疑虑:机器学习的输入(数据)来自哪里?机器学习的输出又将去往何方? 到目前为止,不管是监督学习还是无监督学习,我们都会预先获取大量数据,然后启动模型,不再与环境交互。 这里所有学习都是在算法与环境断开后进行的,被称为离线学习(offline learning)。
环境是否变化?例如,未来的数据是否总是与过去相似,还是随着时间的推移会发生变化?是自然变化还是响应我们的自动化工具而发生变化?
当训练和测试数据不同时,最后一个问题提出了分布偏移(distribution shift)的问题。 接下来的内容将简要描述强化学习问题,这是一类明确考虑与环境交互的问题。
强化学习
如果你对使用机器学习开发与环境交互并采取行动感兴趣,那么最终可能会专注于强化学习(reinforcement learning)。 这可能包括应用到机器人、对话系统,甚至开发视频游戏的人工智能(AI)。 深度强化学习(deep reinforcement learning)将深度学习应用于强化学习的问题,是非常热门的研究领域。 突破性的深度Q网络(Q-network)在雅达利游戏中仅使用视觉输入就击败了人类, 以及 AlphaGo 程序在棋盘游戏围棋中击败了世界冠军,是两个突出强化学习的例子。
在强化学习问题中,智能体(agent)在一系列的时间步骤上与环境交互。 在每个特定时间点,智能体从环境接收一些观察(observation),并且必须选择一个动作(action),然后通过某种机制(有时称为执行器)将其传输回环境,最后智能体从环境中获得奖励(reward)。 此后新一轮循环开始,智能体接收后续观察,并选择后续操作,依此类推。 请注意,强化学习的目标是产生一个好的策略(policy)。 强化学习智能体选择的“动作”受策略控制,即一个从环境观察映射到行动的功能。
强化学习框架的通用性十分强大。 例如,我们可以将任何监督学习问题转化为强化学习问题。 假设我们有一个分类问题,可以创建一个强化学习智能体,每个分类对应一个“动作”。 然后,我们可以创建一个环境,该环境给予智能体的奖励。 这个奖励与原始监督学习问题的损失函数是一致的。
当然,强化学习还可以解决许多监督学习无法解决的问题。 例如,在监督学习中,我们总是希望输入与正确的标签相关联。 但在强化学习中,我们并不假设环境告诉智能体每个观测的最优动作。 一般来说,智能体只是得到一些奖励。 此外,环境甚至可能不会告诉是哪些行为导致了奖励。
强化学习可能还必须处理部分可观测性问题。 也就是说,当前的观察结果可能无法阐述有关当前状态的所有信息。 比方说,一个清洁机器人发现自己被困在一个许多相同的壁橱的房子里。 推断机器人的精确位置(从而推断其状态),需要在进入壁橱之前考虑它之前的观察结果。
最后,在任何时间点上,强化学习智能体可能知道一个好的策略,但可能有许多更好的策略从未尝试过的。 强化学习智能体必须不断地做出选择:是应该利用当前最好的策略,还是探索新的策略空间(放弃一些短期回报来换取知识)。
一般的强化学习问题是一个非常普遍的问题。 智能体的动作会影响后续的观察,而奖励只与所选的动作相对应。 环境可以是完整观察到的,也可以是部分观察到的,解释所有这些复杂性可能会对研究人员要求太高。 此外,并不是每个实际问题都表现出所有这些复杂性。 因此,学者们研究了一些特殊情况下的强化学习问题。
当环境可被完全观察到时,强化学习问题被称为马尔可夫决策过程(markov decision process)。 当状态不依赖于之前的操作时,我们称该问题为上下文赌博机(contextual bandit problem)。 当没有状态,只有一组最初未知回报的可用动作时,这个问题就是经典的多臂赌博机(multi-armed bandit problem)。
相关文章:

动手学深度学习(李沐)PyTorch 第 1 章 引言
在线电子书 深度学习介绍 安装 使用conda环境 conda create -n d2l-zh python3.8 pip安装需要的包 pip install jupyter d2l torch torchvision下载代码并执行 wget https://zh-v2.d2l.ai/d2l-zh.zip unzip d2l-zh.zip jupyter notebookpip install rise如果不想使用jupyt…...

二叉树(二)深度遍历和广度遍历
一、层序遍历 广度优先搜索:使用队列,先进先出 模板: 1、定义返回的result和用于辅助的队列 2、队列初始化: root非空时进队 3、遍历整个队列:大循环while(!que.empty()) 记录每层的size以及装每层结果的变量&a…...
【算法——双指针】
922. 按奇偶排序数组 II 算法讲解050【必备】双指针技巧与相关题目_哔哩哔哩_bilibili main:vector<int>nums { 3,1,2,4 };int i 0, j 1;int n nums.size() - 1;while (j < nums.size() && i < nums.size()) //如果奇偶任一方排好了,另…...
Rocky Linux 9 中添加或删除某个网卡的静态路由的方法
使用ip命令配置临时路由 添加静态路由 ip route add <目的网络> via <下一跳IP> dev <网卡接口名称>例: 给eth0网卡添加一个到达 192.168.2.0/24 网络,下一跳为 192.168.1.254 的路由 ip route add 192.168.2.0/24 via 192.168.1.254 dev eth0…...

网站建设中常见的网站后台开发语言有哪几种,各自优缺点都是什么?
市场上常见的网站后台开发语言有PHP、Python、JavaScript、Ruby、Java和.NET等。这些语言各有其独特的优缺点,适用于不同的开发场景和需求。以下是对这些语言的具体介绍: PHP 优点:PHP是一种广泛用于Web开发的动态脚本语言,特别适…...

【程序大侠传】应用内存缓步攀升,告警如影随形
前序 在武侠编码的江湖中,内存泄漏犹如隐秘杀手,潜伏于应用程序的各个角落,悄无声息地吞噬着系统资源。若不及时发现和解决,必将导致内存枯竭,应用崩溃。 背景:内存泄漏的由来 内存泄漏,乃程序…...

JavaWEB概述
JavaWEB概述 一、什么是JavaWEB 用Java技术解决web互联网领域的技术栈。要学习JavaWEB首先得知道什么是客户端和服务端 客户端:简而言之,这就是使用方,比如我们下载一个软件去使用,里面有很多我们可以使用的功能,那…...

半结构化知识抽取案例
半结构化知识抽取是指从半结构化数据源(如HTML、XML、JSON等)中提取有用的信息,并将其转换为更易于理解和使用的知识形式。半结构化数据通常包含一些结构化的标记或标签,但不像完全结构化的数据那样严格。 比如抽取如下网页到neo …...
Oracle Truncate和delete的区别
DropTruncatedelete语句类型 DDl (数据定义语言 Data Definition Language DDl (数据定义语言 Data Definition Language DML(数据操作语言 Data Manipulation Language 速度 快 删除整个表 快 一次性删除 慢 逐行删除 回滚不可不可可del…...

应用层协议 --- HTTP
序言 在上一篇文章中,我们在应用层实现了一个非常简单的自定义协议,我们在我们报文的首部添加了报文的长度并且使用特定的符号分割。但是想做一个成熟,完善的协议是不简单的,今天我们就一起看看我们每天都会用到的 HTTP协议 。 UR…...
网卡Network Interface Card
文章目录 网卡(Network Interface Card,简称NIC)是一种计算机硬件设备,用于将计算机连接到计算机网络,使计算机能够进行数据通信。它是计算机与外部网络(如局域网、互联网)之间的接口࿰…...

9.1 Linux_I/O_基本知识
文件类型 一切I/O皆文件,文件就是存放在磁盘上面的有序数据的集合。 文件类型: 常规文件 r :就是普通文件目录文件 d :就是目录,是一个索引字符设备文件 c :键盘、鼠标块设备文件 b :U盘、磁…...
[Java]一、面向对象核心编程思想
G:\Java\1.JavaSE 1. 继承 1.1 继承的概述 重点内容:1.知道继承的好处2.会使用继承3.知道继承之后成员变量以及成员方法的访问特点4.会方法的重写,以及知道方法重写的使用场景5.会使用this关键字调用当前对象中的成员6.会使用super关键字调用父类中的成员7.会定义抽象方法以…...

科研绘图系列:R语言多个AUC曲线图(multiple AUC curves)
文章目录 介绍加载R包导入数据数据预处理画图输出结果组图系统信息介绍 多个ROC曲线在同一张图上可以直观地展示和比较不同模型或方法的性能。这种图通常被称为ROC曲线图,它通过比较不同模型的ROC曲线下的面积(AUC)大小来比较模型的优劣。AUC值越大,模型的诊断或预测效果越…...

JavaWeb--纯小白笔记06:使用Idea创建Web项目,Servlet生命周期,注解,中文乱码解决
使用Idea创建一个web项目----详细步骤配置,传送门:http://t.csdnimg.cn/RsOs7 src:放class文件 web:放html文件 out:运行过后产生的文件 一创建一个新的web项目(配置好了后): 在src创建一个文件…...

jQuery——jQuery的2把利器
1、jQuery 核心函数 ① 简称:jQuery 函数,即为 $ 或者 jQuery ② jQuery 库向外直接暴露的是 $ 或者 jQuery ③ 引入 jQuery 库后,直接使用 $ 即可 当函数用:$(xxx) 当对象用:$.xxx&#x…...
Day29笔记-Python操作pdfPython发送邮件
一、Python操作PDF【了解】 1.pdf 简介 PDF是Portable Document Format的缩写,这类文件通常使用.pdf作为其扩展名。在日常开发工作中,最容易遇到的就是从PDF中读取文本内容以及用已有的内容生成PDF文档这两个任务。 在Python中,可以使用名为P…...

Seata分布式事务实践
理论篇 什么是事务 关于事务我们一定会想到下面这四大特性: 原子性:所有操作要么全都完成,要么全都失败。 一致性: 保证数据库中的完整性约束和声明性约束。 隔离性:对统一资源的操作不会同时发生的。 持久性:对事务完成的操作最终会持久化到数据库中。 理解&…...

数字IC设计\FPGA 职位经典笔试面试整理--基础篇2
1. 卡诺图 逻辑函数表达式可以使用其最小项相加来表示,用所有的最小项可以转换为卡诺图进行逻辑项化简 卡诺图讲解资料1 卡诺图讲解资料2 卡诺图讲解资料3 最小项的定义 一个函数的某个乘积项包含了函数的全部变量,其中每个变量都以原变量或反变量的形…...

(务必收藏)推荐市面上8款AI自动写文献综述的网站
在当前的学术研究和论文写作中,AI技术的应用已经变得越来越普遍。特别是在文献综述这一环节,AI工具能够显著提高效率并减少人工劳动。以下是市面上8款推荐的AI自动写文献综述的网站: 一、千笔-AIPassPaper 是一款备受好评的AI论文写作平台&…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...
Java编程之桥接模式
定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

【从零学习JVM|第三篇】类的生命周期(高频面试题)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 …...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...

Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合
作者:来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布,Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明,Elastic 作为 …...

Windows电脑能装鸿蒙吗_Windows电脑体验鸿蒙电脑操作系统教程
鸿蒙电脑版操作系统来了,很多小伙伴想体验鸿蒙电脑版操作系统,可惜,鸿蒙系统并不支持你正在使用的传统的电脑来安装。不过可以通过可以使用华为官方提供的虚拟机,来体验大家心心念念的鸿蒙系统啦!注意:虚拟…...