【YOLO学习】YOLOv1详解
文章目录
- 1. 概述
- 2. 算法流程
- 3. 网络结构
- 4. 损失函数
1. 概述
1. YOLO 的全称是 You Only Look Once: Unified, Real-Time Object Detection。YOLOv1 的核心思想就是利用整张图作为网络的输入,直接在输出层回归 bounding box 的位置和 bounding box 所属的类别。简单来说,只看一次就知道图中物体的类别和位置。
2. 将一幅图像分成 SxS 个网格(grid cell),如果某个 object 的中心落在这个网格中,则这个网格就负责预测这个 object。一个格子只能预测一个物体,会生成两个预测框。
注:这里的 ( x , y , w , h , c ) (x,y,w,h,c) (x,y,w,h,c) 和 7 × 7 × 30 7×7×30 7×7×30 请看下文讲解。
3. 每个网格要预测 B 个bounding box(B一般取2),每个 bounding box 除了要回归自身的位置之外,还要附带预测一个 confidence 值。每个 bounding box 共 5 个参数 ( x , y , w , h , c ) (x,y,w,h,c) (x,y,w,h,c)。
- 使用 ( x , y ) (x,y) (x,y) 表示 bounding box 中心相对于方格左上角的偏移量,范围为 [0,1]。
- 使用 ( w , h ) (w,h) (w,h) 表示 bounding box 的宽和高,该值是相对于图像宽高的比,范围为 [0,1]。
- confidence 代表了所预测的 box 中含有 object 的置信度(有则为 1,没有则为 0)和这个 box 预测的有多准两重信息,其值是这样计算的:
该表达式含义:如果有 object 落在一个 grid cell 里,则第一项取 1,否则取 0。 第二项是预测的预测框(predict box)与真实标签框(ground truth)之间的交集(IOU)值。
问题:为什么每个网格有固定的 B 个 bounding box?(即 B=2)
在训练的时候会在线地计算每个 predictor 预测的 bounding box 和 ground truth 的 IOU,计算出来的 IOU 大的那个 predictor,就会负责预测这个物体,另外一个则不预测。这么做有什么好处?我的理解是,这样做的话,实际上有两个 predictor 来一起进行预测,然后网络会在线选择预测得好的那个 predictor(也就是 IOU 大)来进行预测。
2. 算法流程
整个 YOLO 检测系统如下图所示:
- 假设网络实现的预测类别数为 C 个。论文中使用 PASCAL VOC 数据集,C=20,即实现 20 类别物品的目标检测。
- 输入图像首先被 resize 到指定尺寸。论文中将输入图像统一调整到 448 × 448 448 × 448 448×448,即网络输入: 448 × 448 × 3 448 × 448 × 3 448×448×3。
- 对图像进行划分,共划分 S × S S×S S×S 个方格。论文中 S=7, 即共划分 7 × 7 = 49 7 × 7 = 49 7×7=49 个方格,每个方格包含 64 × 64 64 × 64 64×64 个像素点。
- 针对每个方格:生成 C 个类别目标的概率分数(表示该方格是否存在该目标的概率),用 p 表示;生成 B 个检测框,每个检测框共 5 个参数,即 ( x , y , w , h , c ) (x,y,w,h,c) (x,y,w,h,c)。
每个方格输出向量如下图所示。因此针对每个方格,共有参数量为 ( C + B × 5 ) (C+B×5) (C+B×5) 个。本论文中,即 ( 20 + 2 × 5 ) = 30 (20+2×5)=30 (20+2×5)=30 个。
- 针对一张图片,最终输出向量: S × S × ( C + B × 5 ) S×S×(C+B×5) S×S×(C+B×5)。本论文中即 7 × 7 × 30 = 1470 7 × 7 × 30 = 1470 7×7×30=1470。
- 对输出向量进行后处理,得到最终预测结果。
3. 网络结构
1. 网络结构如下所示。输入: 448 × 448 × 3 448×448×3 448×448×3,输出: 7 × 7 × 30 7×7×30 7×7×30。
针对卷积我们以图片的前两次为例计算一下。卷积计算大致就是如下所示这么一个过程。
2. 网络详解:
(1) YOLO 主要是建立一个 CNN 网络生成预测 7 × 7 × 1024 7×7×1024 7×7×1024 的张量 。
(2) 然后使用两个全连接层执行线性回归,以进行 7 × 7 × 2 7×7×2 7×7×2 边界框预测。将具有高置信度得分(大于 0.25)的结果作为最终预测。
(3) 在 3 × 3 3×3 3×3 的卷积后通常会接一个通道数更低 1 × 1 1×1 1×1 的卷积,这种方式既降低了计算量,同时也提升了模型的非线性能力。
(4) 除了最后一层使用了线性激活函数外,其余层的激活函数为 Leaky ReLU 。
(5) 在训练中使用了 Dropout 与数据增强的方法来防止过拟合。
(6) 对于最后一个卷积层,它输出一个形状为 (7, 7, 1024) 的张量。 然后张量展开。使用 2 个全连接层作为一种线性回归的形式,它输出 1470 个参数,然后 reshape 为 (7, 7, 30) 。
4. 损失函数
1. 损失即计算网络输出值(或预测值)与标签值差异的程度。举例说明,如上图的包含狗狗的方格,对应的标签值与预测值形式如下:
2. YOLOv1 中损失函数共包含三项,即:(1) 坐标预测损失、(2) 置信度预测损失、(3) 类别预测损失。三个损失函数都使用了均方误差。计算公式如下所示:
问题:为什么坐标损失中的 w w w 和 h h h 要加根号?
在上图中,大框和小框的 bounding box 和 ground truth 都是差了一点,但对于实际预测来讲,大框(大目标)差的这一点也许没啥事儿,而小框(小目标)差的这一点可能就会导致bounding box的方框和目标差了很远。而如果还是使用第一项那样直接算平方和误差,就相当于把大框和小框一视同仁了,这样显然不合理。而如果使用开根号处理,就会一定程度上改善这一问题 。
3. 损失函数解释:
(1) 特殊符号含义:
(2) 坐标损失:
(3) 置信度损失:
(4) 分类损失:
相关文章:

【YOLO学习】YOLOv1详解
文章目录 1. 概述2. 算法流程3. 网络结构4. 损失函数 1. 概述 1. YOLO 的全称是 You Only Look Once: Unified, Real-Time Object Detection。YOLOv1 的核心思想就是利用整张图作为网络的输入,直接在输出层回归 bounding box 的位置和 bounding box 所属的类别。简单…...

HarmonyOS应用开发(组件库)--组件模块化开发、工具包、设计模式(持续更新)
致力于,UI开发拿来即用,提高开发效率 常量格式枚举enum格式正则表达式...手机号校验...邮箱校验 文件判断文件是否存在 网络下载下载图片从沙箱中图片转为Base64格式从资源文件中读取图片转Base64 组件输入框...矩形输入框...输入框堆叠效果(…...
python测试开发---前后端交互Axios
Axios 是一个基于 Promise 的 HTTP 客户端,常用于浏览器和 Node.js 中发送 HTTP 请求。它封装了 XMLHttpRequest 和 Node.js 的 http 模块,使得处理网络请求更加简单和直观,尤其适合处理异步请求。以下是 Axios 的基础概念和使用方法…...
删除视频最后几帧 剪切视频
删除视频最后几帧 剪切视频 remove_last.py import subprocess def remove_last_frame(input_file, output_file, frame_rate):command_duration [ffprobe,-v, error,-show_entries, formatduration,-of, defaultnoprint_wrappers1:nokey1,input_file]try:total_duration fl…...

SSM框架学习(四、SpringMVC实战:构建高效表述层框架)
目录 一、SpringMVC简介和体验 1.介绍 2.主要作用 3.核心组件和调用流程理解 4.快速体验 二、SpringMVC接收数据 1.访问路径设置 (1)精准路径匹配 (2)模糊路径匹配 (3)类和方法上添加 RequestMapp…...

戴尔笔记本电脑——重装系统
说明:我的电脑是戴尔G3笔记本电脑。 第一步:按照正常的装系统步骤,配置并进入U盘的PE系统 如果进入PE系统,一部分的硬盘找不到,解决办法:U盘PE系统——出现部分硬盘找不到的解决办法 第二步:磁…...

领夹麦克风哪个品牌音质最好,主播一般用什么麦克风
在这个信息爆炸的时代,清晰的声音传达显得尤为重要。无论是激情澎湃的演讲,还是温馨动人的访谈,一款优质的无线领夹麦克风都能让声音清晰的传播。但市场上产品繁多,如何挑选出性价比高、性能卓越的无线领夹麦克风呢?本…...

华为静态路由(route-static)
静态路由的组成 在华为路由器中,使用ip route-static命令配置静态路由。 一条静态路由主要包含以下要素: 目的地址:数据包要到达的目标IP地址 子网掩码:用于指定目的地址的网络部分和主机部分 下一跳地址(可选&#…...

Focalboard开源项目管理系统本地Windows部署与远程访问协同办公
文章目录 前言1. 使用Docker本地部署Focalboard1.1 在Windows中安装 Docker1.2 使用Docker部署Focalboard 2. 安装Cpolar内网穿透工具3. 实现公网访问Focalboard4. 固定Focalboard公网地址 💡 推荐 前些天发现了一个巨牛的人工智能学习网站,通俗易懂&am…...
Java如何操作Elasticsearch
目录 前言 Procuct实体类 一、操作索引 二、操作文档 三、查询文档 四、复杂条件查询 五、分页查询 六、结果排序 本文文章介绍的是通过template的方法操作elasticsearch,他的话直接本地注入使用就行,repository方法还需要实现接口,所…...

cpu路、核、线程、主频、缓存
路:主板插口实际插入的 CPU 个数,也可以理解为主板上支持的CPU的数量。每个CPU插槽可以插入一个物理处理器芯片。例如,一台服务器可能有2路或4路插槽,这意味着它最多可以安装2个或4个物理处理器。 核:单块 CPU 上面能…...

【AI算法岗面试八股面经【超全整理】——深度学习】
AI算法岗面试八股面经【超全整理】 概率论【AI算法岗面试八股面经【超全整理】——概率论】信息论【AI算法岗面试八股面经【超全整理】——信息论】机器学习【AI算法岗面试八股面经【超全整理】——机器学习】深度学习【AI算法岗面试八股面经【超全整理】——深度学习】NLP【A…...

STL——map和set【map和set的介绍和使用】【multimap和multiset】
目录 map和set1.关联式容器2.键值对3.树形结构的关联式容器3.1set3.1.1set的介绍3.1.2set的使用3.1.2.1set的模版参数列表3.1.2.2set的构造3.1.2.3set的迭代器3.1.2.4set基本接口的使用3.1.2.5set使用案例 3.2map3.2.1map介绍3.2.2map的使用3.2.2.1map的构造3.2.2.2map的迭代器…...

【笔记】神领物流配置本地hosts无法访问域名(排除DNS 排除文件编码问题)已解决
第一次看着文档准备项目 踩坑不少 一遇到问题总是想着先自己解决 其实文档里就有解决方法 看文字总是喜欢跳过 导入虚拟机的时候忘记了给它设置ip地址 按照文档来就好了 配置完之后立刻就可以通过域名访问了 以防万一写一个本地hosts文件的路径在这里 通常来说都是ÿ…...

Java | Leetcode Java题解之第424题替换后的最长重复字符
题目: 题解: public class Solution {public int characterReplacement(String s, int k) {int len s.length();if (len < 2) {return len;}char[] charArray s.toCharArray();int left 0;int right 0;int res 0;int maxCount 0;int[] freq n…...
Xcode 16 Pod init 报错
pod init failed in Xcode 16 Issue #12583 CocoaPods/CocoaPods GitHub 根据你提供的步骤,以下是详细的操作指南来解决 CocoaPods 的问题: ### 步骤 1:在 Xcode 中转换项目文件夹为组 1. 打开你的 Xcode 项目。 2. 在左侧的项目导航器…...

【数据结构】Java的HashMap 和 HashSet 大全笔记,写算法用到的时候翻一下,百度都省了!(实践篇)
本篇会加入个人的所谓鱼式疯言 ❤️❤️❤️鱼式疯言:❤️❤️❤️此疯言非彼疯言 而是理解过并总结出来通俗易懂的大白话, 小编会尽可能的在每个概念后插入鱼式疯言,帮助大家理解的. 🤭🤭🤭可能说的不是那么严谨.但小编初心是能让更多人…...
Docker 教程:如何查看容器的最后 300 行实时日志
Docker 教程:如何查看容器的最后 300 行实时日志 文章目录 Docker 教程:如何查看容器的最后 300 行实时日志Docker 日志简介查看容器日志的基本命令查看最后 300 行实时日志的具体命令参数解释 实际案例演示示例输出 常见问题解答如何退出实时日志的查看…...
Qwen2-VL论文阅读笔记
第1章介绍 论文亮点: 1、 the Naive Dynamic Resolution mechanism 2、Multimodal Rotary Position Embedding (M-RoPE) 2D Rotary Position Embedding 3、统一图片和视频的处理范式、增i强视觉感知能力 4、LVLMs的scaling laws:2B、8B、72B 5、 dynamic…...

APScheduler、Django实现定时任务,以及任务动态操作
环境:Windows 11、python 3.12.3、Django 4.2.11、 APScheduler 3.10.4 背景:工作需要使用且用法较为复杂,各种功能基本都使用了 事件:20240920 说明:记录,方便后期自己查找 1、搭建基础环境 文件结构图…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...

通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...

Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...
C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)
名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...