当前位置: 首页 > news >正文

算法.图论-并查集

文章目录

    • 1. 并查集介绍
    • 2. 并查集的实现
      • 2.1 实现逻辑
      • 2.2 isSameSet方法
      • 2.3 union方法(小挂大优化)
      • 2.4 find方法(路径压缩优化)
    • 3. 并查集模板
    • 4. 并查集习题
      • 4.1 情侣牵手
      • 4.2 相似字符串组

1. 并查集介绍

定义:
并查集是一种树型的数据结构,用于处理一些不相交集合的合并及查询问题(即所谓的并、查)。比如说,我们可以用并查集来判断一个森林中有几棵树、某个节点是否属于某棵树等
并查集的常见的方法:

方法作用
int find (int)作用就是查找一个元素所在大集合的代表元素, 返回这个元素
boolean isSameSet (int, int)判断传入的两个元素是不是同属一个大集合, 返回T/F
void union (int, int)合并传入的两个元素所代表的大集团(注意不仅仅是这两个元素)

并查集的时间复杂的要求就是实现上述的操作的时间复杂度都是O(1)
下面是关于并查集的一些常见的操作的图示
在这里插入图片描述

2. 并查集的实现

2.1 实现逻辑

不论是哈希表的机构还是list的顺序结构或者是其他的常见的数据结构, 都不可以做到时间复杂度是O(1)的这个指标, 我们直接介绍实现的方式 --> 通过一个father数组以及size数组
关于这两个数组的含义:

数组含义
father下标i代表的是元素的编号, father[i]代表的是他的父亲节点
size下标i代表的是元素的编号, size[i]代表的是这个节点的孩子节点的个数(包括本身)

在这里插入图片描述
初态就是这个样子, 每一个元素的父亲节点都是其本身, 也就是说每一个节点本身就是其所在集合的代表节点, 然后这个集合的大小就是1
下面我们执行操作
step1 : union(a, b)
step2 : union(c, a)
下面是图示(图解一下操作1, 操作2其实是同理的)
在这里插入图片描述
上面的图解也说明了很多问题, 我们的树形结构的挂载的方式是, 小挂大(小的树挂到大树上)
此时进行了union操作之后的逻辑结构就是左下角所示, 此时我们 {a,b} 共属于一个集合, 进行find操作的时候, find(a) 的结果是 b, find(b) 的结果也是 b, 此时size数组中a的值不会再使用了, 因为这时a不可能是领袖节点了, 也就是说这个数据是脏数据…

2.2 isSameSet方法

其实正常来说我们的isSameSet方法和union方法都需要调用find方法, 但是find方法中的路径压缩的技巧是比较重要的, 所以我们单独拎出来放后面说(这里假设已经实现好了), 实现也是比较简单的, 只需要找到这两个元素的代表领袖节点看是不是一个就可以了

	//isSameSet方法private static boolean isSameSet(int a, int b){return find(a) == find(b);}

2.3 union方法(小挂大优化)

解释一下小挂大概念, 在算法导论这本书中说到的是一种秩的概念, 本质上也是为了降低树(集团)的高度所做出的努力, 但这个不是特别必要的…, 也就是在两大集团合并的时候, 小集团(小数目的节点)要依附大集团而存在, 也就是合并的时候, 小集团要挂在大集团上面, 这样可以从一定程度上降低树的高度
代码实现如下

	//union方法private static void union(int a, int b){int fa = find(a);int fb = find(b);if(fa != fb){sets--;if(size[fa] >= size[fb]){father[fb] = fa;size[fa] += size[fb];}else{father[fa] = fb;size[fb] += size[fa];}}}

2.4 find方法(路径压缩优化)

上面的union的小挂大优化, 其实不是特别必要的, 但是我们find方法中的路径压缩是一定要完成的, 如果没有路径压缩的话, 我们的时间复杂度的指标就不会是O(1)
路径压缩指的就是, 在find方法找到父亲节点的时候, 同时把我们的沿途所有节点的父亲节点都改为找到的父亲节点, 以便于操作的时候不用遍历一个长链去寻找父亲节点, 图解如下
在这里插入图片描述
假设我们执行find(a)操作, 就会如图所示把我们的沿途的所有节点的父亲节点都改为领袖节点e
我们借助的是stack栈结构, 或者是递归(其实就是系统栈)实现的

private static final int MAX_CP = 31;private static final int[] father = new int[MAX_CP];private static final int[] size = new int[MAX_CP];private static final int[] stack = new int[MAX_CP];//find方法(路径压缩的迭代实现)private static int find1(int a){int sz = 0;while(father[a] != a){stack[sz++] = a;a = father[a];}while(sz > 0){father[stack[--sz]] = a;}return father[a];}//find方法(路径压缩的递归实现)private static int find(int a){if(father[a] != a){father[a] = find(father[a]);}return father[a];}

3. 并查集模板

上面就是我们关于并查集最基本的分析, 我们提供几个测试链接测试一下

牛客并查集模板

//并查集的基本实现方式
import java.util.*;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.io.OutputStreamWriter;
import java.io.IOException;public class Main {private static final int MAXN = 1000001;private static final int[] father = new int[MAXN];private static final int[] size = new int[MAXN];private static final int[] stack = new int[MAXN];private static int cnt = 0;private static void build(int sz) {cnt = sz;for (int i = 0; i <= cnt; i++) {father[i] = i;size[i] = 1;}}private static int find(int n) {//下面就是扁平化(路径压缩的处理技巧)int capacity = 0;while (father[n] != n) {stack[capacity++] = n;n = father[n];}//开始改变沿途节点的指向while (capacity > 0) {father[stack[--capacity]] = n;}return father[n];}private static boolean isSameSet(int a, int b) {return find(a) == find(b);}private static void union(int a, int b) {//下面的设计就是小挂大的思想int fa = find(a);int fb = find(b);if (fa != fb) {if (size[fa] >= size[fb]) {father[fb] = fa;size[fa] += size[fb];} else {father[fa] = fb;size[fb] += size[fa];}}}//我们使用的是高效率的io工具(使用的其实就是一种缓存的技术)public static void main(String[] args) throws IOException {BufferedReader br = new BufferedReader(new InputStreamReader(System.in));StreamTokenizer in = new StreamTokenizer(br);PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));while (in.nextToken() != StreamTokenizer.TT_EOF) {int n = (int)in.nval;build(n);in.nextToken();int m = (int)in.nval;for (int i = 0; i < m; i++) {in.nextToken();int op = (int)in.nval;in.nextToken();int n1 = (int)in.nval;in.nextToken();int n2 = (int)in.nval;if (op == 1) {out.println(isSameSet(n1, n2) ? "Yes" : "No");} else {union(n1, n2);}}}out.flush();out.close();br.close();}
}

洛谷并查集模板

//并查集的基本实现方式
import java.util.*;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.io.OutputStreamWriter;
import java.io.IOException;public class Main {private static final int MAXN = 100001;private static final int[] father = new int[MAXN];private static final int[] size = new int[MAXN];private static final int[] stack = new int[MAXN];private static int cnt = 0;private static void build(int sz){cnt = sz;for(int i = 0; i <= cnt; i++){father[i] = i;size[i] = 1;}}private static int find(int n){//下面就是扁平化(路径压缩的处理技巧)int capacity = 0;while(father[n] != n){stack[capacity++] = n;n = father[n];}//开始改变沿途节点的指向while(capacity > 0){father[stack[--capacity]] = n;}return father[n];}private static boolean isSameSet(int a, int b){return find(a) == find(b);}private static void union(int a, int b){//下面的设计就是小挂大的思想int fa = find(a);int fb = find(b);if(fa != fb){if(size[fa] >= size[fb]){father[fb] = fa;size[fa] += size[fb];}else{father[fa] = fb;size[fb] += size[fa];}}}//我们使用的是高效率的io工具(使用的其实就是一种缓存的技术)public static void main(String[] args) throws IOException{BufferedReader br = new BufferedReader(new InputStreamReader(System.in));StreamTokenizer in = new StreamTokenizer(br);PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));while(in.nextToken() != StreamTokenizer.TT_EOF){int n = (int)in.nval;build(n);in.nextToken();int m = (int)in.nval;for(int i = 0; i < m; i++){in.nextToken();int op = (int)in.nval;in.nextToken();int n1 = (int)in.nval;in.nextToken();int n2 = (int)in.nval;if(op == 2){out.println(isSameSet(n1, n2) ? "Y" : "N");}else{union(n1, n2);}}}out.flush();out.close();br.close();}
}

4. 并查集习题

4.1 情侣牵手

leetcode765.情侣牵手题目链接
在这里插入图片描述

//本题的前置知识可能是置换环(这一题的并查集的思路尤其不好想)
class Solution {
//核心点的分析就是如果一个集合里面有k对情侣, 那么我们至少需要交换 k - 1 次private static final int MAX_CP = 31;private static final int[] father = new int[MAX_CP];private static final int[] size = new int[MAX_CP];private static final int[] stack = new int[MAX_CP];private static int sets = 0;//初始化并查集private static void build(int n){sets = n;for (int i = 0; i < n; i++) {father[i] = i;size[i] = 1;}}//find方法(路径压缩的实现)//find方法(路径压缩的递归实现)private static int find(int a){if(father[a] != a){father[a] = find(father[a]);}return father[a];}//isSameSet方法private static boolean isSameSet(int a, int b){return find(a) == find(b);}//union方法private static void union(int a, int b){int fa = find(a);int fb = find(b);if(fa != fb){sets--;if(size[fa] >= size[fb]){father[fb] = fa;size[fa] += size[fb];}else{father[fa] = fb;size[fb] += size[fa];}}}public int minSwapsCouples(int[] row) {int cpN = row.length / 2;build(cpN);for(int i = 0; i < row.length; i += 2){union(row[i] / 2, row[i + 1] / 2);}return cpN - sets;}
}

4.2 相似字符串组

leetcode839.相似字符串组
在这里插入图片描述

//简单的并查集的应用
class Solution {private static final int MAXN = 301;private static final int[] father = new int[MAXN];private static final int[] size = new int[MAXN];private static final int[] stack = new int[MAXN];private static int sets = 0;//初始化并查集的方式private static void build(int n){sets = n;for(int i = 0; i < n; i++){father[i] = i;size[i] = 1;}}//find方法private static int find(int a){int sz = 0;while(father[a] != a){stack[sz++] = a;a = father[a];}while(sz > 0){father[stack[--sz]] = a;}return father[a];}//isSameSet方法 private static boolean isSameSet(int a, int b){return find(a) == find(b);}//union方法private static void union(int a, int b){int fa = find(a);int fb = find(b);if(fa != fb){sets--;if(size[fa] >= size[fb]){size[fa] += size[fb];father[fb] = fa;}else{size[fb] += size[fa];father[fa] = fb;}}}public int numSimilarGroups(String[] strs) {int n = strs.length;int m = strs[0].length();build(n);for(int i = 0; i < n; i++){for(int j = i + 1; j < n; j++){if (find(i) != find(j)) {int diff = 0;for (int k = 0; k < m && diff < 3; k++) {if (strs[i].charAt(k) != strs[j].charAt(k)) {diff++;}}if (diff == 0 || diff == 2) {union(i, j);}}}}return sets;}
}

相关文章:

算法.图论-并查集

文章目录 1. 并查集介绍2. 并查集的实现2.1 实现逻辑2.2 isSameSet方法2.3 union方法(小挂大优化)2.4 find方法(路径压缩优化) 3. 并查集模板4. 并查集习题4.1 情侣牵手4.2 相似字符串组 1. 并查集介绍 定义&#xff1a; 并查集是一种树型的数据结构&#xff0c;用于处理一些不…...

elasticSearch常见命令及历史数据迁移

es这种非关系型数据库&#xff0c;感觉可视化效果不是很好&#xff0c;个人在操作中&#xff0c;习惯性通过简单的方式去访问。也是接触不久。只能出一些基操。共同学习记录&#xff0c;大家有好的操作也可留言备注。 1&#xff0c;常见命令 1&#xff09;查询有哪些index&…...

WebLogic 漏洞复现

1、后台弱⼝令GetShell 默认账号密码&#xff1a;weblogic/Oracle123 weblogic常⽤弱⼝令&#xff1a;https://cirt.net/passwords?criteriaweblogic 这⾥注意&#xff0c; 单个账号错误密码5次之后就会⾃动锁定。 http://47.121.212.195:7001/console 2、登录后台后&#…...

web基础:域名、网页、HTML、web版本

文章目录 引言域名网站访问方式域名结构域名解析DNS解析过程 网页网页文件类型静态网页与动态网页常用动态网页编程语言 HTMLHTML 语法规则HTML 文件结构HTML 文件基本结构示例&#xff1a;常用 HTML 标签HTML文件基本结构 WEB版本 引言 web&#xff08;World Wide Web&#x…...

【项目案例】物联网比较好的10+练手项目推荐,附项目文档/源码/视频

练手项目推荐 1 智能小车 项目功能介绍&#xff1a; 本项目由三部分组成&#xff1a;应用端&#xff08;微信小程序&#xff09;、设备端&#xff08;Hi3861&#xff09;、驱动端&#xff08;UPS&#xff09;。 1. 应用端&#xff0c;采用微信小程序作为应用端控制界面。在开…...

AWS注册时常见错误处理

引言 创建AWS账号是使用AWS云服务的第一步&#xff0c;但在注册过程中可能会遇到一些常见的问题。本文中九河云将帮助您排查和解决在创建AWS账户时可能遇到的一些常见问题&#xff0c;包括未接到验证电话、最大失败尝试次数错误以及账户激活延迟等。 常见问题及解决方法 1. …...

Spark-RDD持久化

一、Spark的三种持久化机制 1、cache 它是persist的一种简化方式&#xff0c;作用是将RDD缓存到内存中&#xff0c;以便后续快速访问&#xff0c;提高计算效率。cache操作是懒执行的&#xff0c;即执行action算子时才会触发。 2、persist 它提供了不同的存储级别&#xff0…...

vue2中使用tailwindCss 详细教程

1、先看官方文档:https://www.tailwindcss.cn/ 2、先安装:npm install -D tailwindcss ---------------通过 npm 安装 tailwindcss,然后创建你自己的 create your tailwind.config.js 配置文件。 npm install -D tailwindcss 3、初始化文件—npx tailwindcss init npx ta…...

机器视觉工程师一直做调试,维护岗位,想转岗软件方面C#从零开始,快则三年不到,慢则一辈子不会

其实不是每一家做视觉检测&#xff0c;或者是做设备必须要机器视觉工程师开发&#xff0c;其实公司对标准软件更感兴趣&#xff0c;主要非常高的性价比&#xff0c;省时省钱省人。所以这里有个问题&#xff0c;就是公司平台的重要性&#xff0c;首先他对开发是刚需&#xff0c;…...

【初阶数据结构】详解二叉树 - 树和二叉树(三)(递归的魅力时刻)

文章目录 前言1. 二叉树链式结构的意义2. 手搓一棵二叉树3. 二叉树的遍历&#xff08;重要&#xff09;3.1 遍历的规则3.2 先序遍历3.3 中序遍历3.4 后序遍历3.5 遍历的代码实现3.5.1 先序遍历代码实现3.5.2 中序遍历代码实现3.5.3 后序遍历代码实现 4. 统计二叉树结点的个数5.…...

【QT】QWidget 重要属性

文章目录 enabledgeometrywindowTitlewindowIconqrc 机制windowOpacitycursorfontQFont toolTip 和 toolTipDurationfocusPolicyQt::FocusPolicy styleSheet enabled 作用&#xff1a;设置控件是否可使用. true 表⽰可用, false 表⽰禁用. 对应的API bool isEnabled(); // 获…...

什么是数据库连接池?为什么需要使用连接池?

什么是数据库连接池&#xff1f;为什么需要使用连接池&#xff1f; 什么是数据库连接池&#xff1f; 数据库连接池是一种创建和管理数据库连接的技术。在传统的应用程序中&#xff0c;每当需要与数据库进行交互时&#xff0c;都会创建一个新的数据库连接。 这种做法虽然简单…...

2024ICPC网络赛第一场C. Permutation Counting 4(线性代数)

题目链接 题目大意&#xff1a;给你n个范围[ l i , r i l_i,r_i li​,ri​]&#xff0c;每个位置可以在这个范围中选择一个数&#xff0c;然后形成排列1到n的排列p。问p的所有情况的个数的奇偶性。 一个很妙的行列式转化&#xff0c;纯纯的线性代数。 首先&#xff0c;我们把…...

01.前端面试题之ts:说说如何在Vue项目中应用TypeScript?

文章目录 一、前言二、使用Componentcomputed、data、methodspropswatchemit 三 、总结 一、前言 与link类似 在VUE项目中应用typescript&#xff0c;我们需要引入一个库vue-property-decorator&#xff0c; 其是基于vue-class-component库而来&#xff0c;这个库vue官方推出…...

【HTTP】方法(method)以及 GET 和 POST 的区别

文章目录 方法&#xff08;method&#xff09;登录上传GET 和 POST 有什么区别&#xff08;面试&#xff09;区别不准确的说法 方法&#xff08;method&#xff09; 首行中的第一部分。首行是由方法、URL 和版本号组成 方法描述了这次请求想干什么&#xff0c;最主要的是&…...

Ubuntu NFS 搭建及配置

在 Ubuntu 上搭建和配置 NFS&#xff08;Network File System&#xff09;服务器&#xff0c;可以让其他设备通过网络访问共享的文件夹。以下是步骤指南&#xff1a; 1. 安装 NFS 服务器 首先&#xff0c;安装 NFS 服务器软件包&#xff1a; sudo apt update sudo apt insta…...

双十一好物推荐,这些值得入手的宝藏产品

随着双十一的钟声即将敲响&#xff0c;这个万众期待的购物盛宴就要来临&#xff01;为了让大家避免在众多的商品中不知所措&#xff0c;妮妮精心筹备了一份购物清单&#xff0c;分享那些我亲身感受超棒&#xff0c;觉得十分值得购买的物品。 这些商品不但价格合理&#xff0c;而…...

秋招内推2025--招联金融

【投递方式】 直接扫下方二维码&#xff0c;或点击内推官网https://wecruit.hotjob.cn/SU61025e262f9d247b98e0a2c2/mc/position/campus&#xff0c;使用内推码 igcefb 投递&#xff09; 【招聘岗位】 后台开发 前端开发 数据开发 数据运营 算法开发 技术运维 软件测试 产品策…...

C++类和对象——第二关

目录 类的默认成员函数&#xff1a; &#xff08;一&#xff09;构造函数 &#xff08;二&#xff09;析构函数 &#xff08;三&#xff09;拷贝构造函数 类的默认成员函数&#xff1a; 类里面有6个特殊的成员函数分别包揽不同的功能; &#xff08;一&#xff09;构造函数…...

服务器数据恢复—raid5阵列热备盘上线失败导致阵列崩溃的数据恢复案例

服务器磁盘阵列数据恢复环境&#xff1a; 服务器中有两组分别由4块SAS硬盘组建的raid5磁盘阵列&#xff0c;两组raid5阵列划分LUN&#xff0c;组成LVM结构&#xff0c;格式化为EXT3文件系统。 服务器磁盘阵列故障&#xff1a; 服务器中一组raid5阵列中有一块硬盘离线&#xff…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“&#x1f916;手搓TuyaAI语音指令 &#x1f60d;秒变表情包大师&#xff0c;让萌系Otto机器人&#x1f525;玩出智能新花样&#xff01;开整&#xff01;” &#x1f916; Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制&#xff08;TuyaAI…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

Mac下Android Studio扫描根目录卡死问题记录

环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中&#xff0c;提示一个依赖外部头文件的cpp源文件需要同步&#xff0c;点…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

免费数学几何作图web平台

光锐软件免费数学工具&#xff0c;maths,数学制图&#xff0c;数学作图&#xff0c;几何作图&#xff0c;几何&#xff0c;AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...

Razor编程中@Html的方法使用大全

文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...

springboot 日志类切面,接口成功记录日志,失败不记录

springboot 日志类切面&#xff0c;接口成功记录日志&#xff0c;失败不记录 自定义一个注解方法 import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target;/***…...