【python qdrant 向量数据库 完整示例代码】
测试一下python版本的dqrant向量数据库的效果,完整代码如下:
安装库
!pip install qdrant-client>=1.1.1
!pip install -U sentence-transformers
导入
from qdrant_client import models, QdrantClient
from sentence_transformers import SentenceTransformerencoder = SentenceTransformer("all-MiniLM-L6-v2", device="cuda")
准备测试数据集
documents = [{"name": "The Time Machine","description": "A man travels through time and witnesses the evolution of humanity."* 8,"author": "H.G. Wells","year": 1895,},{"name": "Ender's Game","description": "A young boy is trained to become a military leader in a war against an alien race."* 4,"author": "Orson Scott Card","year": 1985,},{"name": "Brave New World","description": "A dystopian society where people are genetically engineered and conditioned to conform to a strict social hierarchy."* 6,"author": "Aldous Huxley","year": 1932,},
] * 50000print(len(documents))
创建存储库
qdrant = QdrantClient(":memory:") # 内存中
# qdrant = QdrantClient(path='./qdrant') # 存储到本地
在数据库中创建一个collection(类似一个存储桶)
qdrant.recreate_collection(collection_name="my_books",vectors_config=models.VectorParams(size=encoder.get_sentence_embedding_dimension(), # Vector size is defined by used modeldistance=models.Distance.COSINE,),
)
对文档进行向量化
import hashlib
from tqdm import tqdmdef sha256(text):hash_object = hashlib.sha256()hash_object.update(text.encode("utf-8"))hash_value = hash_object.hexdigest()return hash_valuerecords = []
bs = 256
for i in tqdm(range(0, len(documents), bs)):docs = documents[i : i + bs]vectors = encoder.encode([doc["description"] for doc in docs], normalize_embeddings=True).tolist()record = [models.Record(id=idx, vector=vec, payload=doc) # sha256(doc['description'])for idx, vec, doc in zip(range(i, i + bs), vectors, docs)]records.extend(record)
上传到向量数据库中指定的collection
qdrant.upload_points(collection_name="my_books", points=records, batch_size=128, parallel=12
)
语义搜索
query = "Aliens attack our planet"
hits = qdrant.search(collection_name="my_books",query_vector=encoder.encode(query).tolist(),limit=6,
)
for hit in hits:print(hit.payload, "score:", hit.score)
条件搜索
search only for books from 21st century
hits = qdrant.search(collection_name="my_books",query_vector=encoder.encode("Tyranic society").tolist(),query_filter=models.Filter(must=[models.FieldCondition(key="year", range=models.Range(gte=1980))]),limit=3,
)
for hit in hits:print(hit.payload, "score:", hit.score)
参考官方GitHub
github
colab
相关文章:
【python qdrant 向量数据库 完整示例代码】
测试一下python版本的dqrant向量数据库的效果,完整代码如下: 安装库 !pip install qdrant-client>1.1.1 !pip install -U sentence-transformers导入 from qdrant_client import models, QdrantClient from sentence_transformers import SentenceT…...

初识C语言(三)
感兴趣的朋友们可以留个关注,我们共同交流,相互促进学习。 文章目录 前言 八、函数 九、数组 (1)数组的定义 (2)数组的下标和使用 十、操作符 (1)算数操作符 (2ÿ…...

用通义灵码如何快速合理解决遗留代码问题?
本文首先介绍了遗留代码的概念,并对遗留代码进行了分类。针对不同类型的遗留代码,提供了相应的处理策略。此外,本文重点介绍了通义灵码在维护遗留代码过程中能提供哪些支持。 什么是遗留代码 与过时技术相关的代码: 与不再受支持的…...

新书推荐——《Python贝叶斯深度学习》
在过去的十年中,机器学习领域取得了长足的进步,并因此激发了公众的想象力。但我们必须记住,尽管这些算法令人印象深刻,但它们并非完美无缺。本书旨在通过平实的语言介绍如何在深度学习中利用贝叶斯推理,帮助读者掌握开…...

数据结构-3.1.栈的基本概念
一.栈的定义: 栈和线性表的区别:栈只能在表尾一端进行插入或者删除的操作,而线性表可以在任意一个地方进行插入或者删除 二.有关栈的关键术语: 三.栈的基本操作: 1.回顾线性表的基本操作: 2.栈的基本操作&…...

关于 NLP 应用方向与深度训练的核心流程
文章目录 主流应用方向核心流程(5步)1.选定语言模型结构2.收集标注数据3.forward 正向传播4.backward 反向传播5.使用模型预测真实场景 主流应用方向 文本分类文本匹配序列标注生成式任务 核心流程(5步) 基本流程实现的先后顺序…...
linux如何启用ipv6随机地址
简介 在 IPv6 中,临时随机地址(Temporary IPv6 Address)是一种为了提高隐私和安全而设计的功能。通常,默认的 IPv6 地址是基于设备的 MAC 地址生成的,容易导致跟踪和识别设备。启用临时 IPv6 地址可以避免这个问题&am…...
探索 Android DataBinding:实现数据与视图的完美融合
在 Android 开发中,数据与视图的交互一直是一个关键的问题。为了更好地实现数据的展示和更新,Google 推出了 DataBinding 库,它为开发者提供了一种简洁、高效的方式来处理数据与视图之间的绑定关系,大大提高了开发效率和代码的可读…...
Java 编码系列:线程基础与最佳实践
引言 在多任务处理和并发编程中,线程是不可或缺的一部分。Java 提供了丰富的线程管理和并发控制机制,使得开发者可以轻松地实现多线程应用。本文将深入探讨 Java 线程的基础知识,包括 Thread 类、Runnable 接口、Callable 接口以及线程的生命…...

《深度学习》—— ResNet 残差神经网络
文章目录 一、什么是ResNet?二、残差结构(Residual Structure)三、Batch Normalization(BN----批归一化) 一、什么是ResNet? ResNet 网络是在 2015年 由微软实验室中的何凯明等几位大神提出,斩获…...

针对考研的C语言学习(定制化快速掌握重点3)
1.数组常见错误 数组传参实际传递的是数组的起始地址,若在函数中改变数组内容,数组本身也会发生变化 #include<stdio.h> void change_ch(char* str) {str[0] H; } int main() {char ch[] "hello";change_ch(ch);printf("%s\n&q…...

pikachu XXE(XML外部实体注入)通关
靶场:pikachu 环境: 系统:Windows10 服务器:PHPstudy2018 靶场:pikachu 关卡提示说:这是一个接收xml数据的api 常用的Payload 回显 <?xml version"1.0"?> <!DOCTYPE foo [ <!ENTITY …...
shell脚本定时任务通知到钉钉
shell脚本定时任务通知到钉钉 1、背景 前两天看了一下定时任务,垃圾清理、日志相关、系统巡检这些,有的服务器运行就有问题,或者不运行,正好最近在做运维标准重制运维手册,顺便把自动化这块优化一下,所…...

2.4K star的GOT-OCR2.0:端到端OCR 模型
GOT-OCR2.0是一款新一代的光学字符识别(OCR)技术,标志着人工智能在文本识别领域的重大进步。作为一款开源模型,GOT-OCR2.0不仅支持传统的文本和文档识别,还能够处理乐谱、图表以及复杂的数学公式,为用户提供…...

【JavaEE】——线程的安全问题和解决方式
阿华代码,不是逆风,就是我疯,你们的点赞收藏是我前进最大的动力!!希望本文内容能够帮助到你! 目录 一:问题引入 二:问题深入 1:举例说明 2:图解双线程计算…...

初步认识了解分布式系统
背景认识:我们要学习redis,还是得了解一下什么是分布式。为什么呢?因为redis只有在分布式系统中才能发挥它最大的作用,也就是领域展开,所以接下来我们就简单过一下什么是分布式系统 一些术语认识: &#x…...
react 为什么不能学习 vue3 进行静态节点标记优化性能?
因为 React 使用的是 JSX,而 JSX 本质上就是 JS 语言,是具有非常高的动态的,而 Vue 使用的 template 则是给了足够的约束,比如说 Vue 的 template 里面使用了很多特定的标记来做不同的事情,比如说 v-if 就是进行变量判…...

Elasticsearch黑窗口启动乱码问题解决方案
问题描述 elasticsearch启动后有乱码现象 解决方案: 提示:这里填写该问题的具体解决方案: 到 \config 文件下找到 jvm.options 文件 打开后 在文件末尾空白处 添加 -Dfile.encodingGBK 保存后重启即可。...

Logtus IT员工参加国际技术大会
Logtus IT的员工参加了国际技术大会,该大会致力于在金砖国家框架内开发俄罗斯的技术。该活动包括一个展览,俄罗斯开发商展示了他们的信息技术、电子和电信成就。展示了面向国内和国际市场(包括政府机构)的解决方案、产品和平台。 …...

ant design vue组件中table组件设置分组头部和固定总结栏
问题:遇到了个需求,不仅要设置分组的头部,还要在顶部有个统计总和的栏。 分组表头的配置主要是这个,就是套娃原理,不需要展示数据的直接写个title就行,需要展示数据的字段才需要详细的配置属性。 const co…...

springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...

工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
Angular微前端架构:Module Federation + ngx-build-plus (Webpack)
以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式
今天是关于AI如何在教学中增强学生的学习体验,我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育,这并非炒作,而是已经发生的巨大变革。教育机构和教育者不能忽视它,试图简单地禁止学生使…...

基于Springboot+Vue的办公管理系统
角色: 管理员、员工 技术: 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能: 该办公管理系统是一个综合性的企业内部管理平台,旨在提升企业运营效率和员工管理水…...

uniapp 小程序 学习(一)
利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 :开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置,将微信开发者工具放入到Hbuilder中, 打开后出现 如下 bug 解…...
深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向
在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...