当前位置: 首页 > news >正文

新手上路:Anaconda虚拟环境创建和配置以使用PyTorch和DGL

文章目录

  • 前言
  • 步骤 1: 安装 Anaconda
  • 步骤 2: 创建新的 Anaconda 环境
  • 步骤 3: 安装最新版本的 PyTorch
  • 步骤 4: 安装特定版本的 PyTorch
  • 步骤 5: 安装最新版本的 DGL
  • 步骤 6: 安装特定版本的 DGL
  • 步骤 7: Pycharm中使用虚拟环境解释器
    • 第一种情况:创建新项目
    • 第二种情况:已有项目或文件
  • 步骤 8: 验证安装
    • 结论


前言

在数据科学和机器学习领域,Anaconda 是一个非常流行的平台,它提供了一个管理包和环境的强大工具。

在本文中,我们将逐步创建一个新的 Anaconda 环境,并在其中安装最新版本的 PyTorch 和 DGL,以及如何安装特定版本的这些库。

步骤 1: 安装 Anaconda

首先,确保你的系统上安装了 Anaconda。你可以看一下之前发布的文章(windows CPU)安装

步骤 2: 创建新的 Anaconda 环境

创建一个新的环境可以帮助你为不同的项目隔离依赖,避免版本冲突。我们将创建一个名为 newdglgcn 的环境,并指定 Python 版本为 3.8。

  1. 打开 Anaconda Prompt。 开始->所有应用->Anaconda3(64-bit)
    在这里插入图片描述

  2. 输入以下命令创建新环境:

    conda create -n newdglgcn python=3.8  
    

在这里插入图片描述
在这里插入图片描述

注意:一方面,安装版本尽量不要太新,安装现在稳定的版本即可。
感兴趣可以看这里

下图中红框表示,现在比较稳定的版本
在这里插入图片描述

另一方面,许多需要复现的论文可能版本在3.8或3.9。所以我选择安装3.8版本的python。

  1. 激活新环境:
    conda activate newdglgcn
    

在这里插入图片描述

步骤 3: 安装最新版本的 PyTorch

在新环境中,我们将安装最新版本的 PyTorch。

注意下面安装包,都必须先激活环境后,在环境中使用命令。
最明显的标志是,左端出现 (你的环境名) 标志。

  1. 使用 conda 安装最新版本的 PyTorch:

这个命令可以在 pytorch 官网找到
在这里插入图片描述

选择你需要的配置,然后生成安装命令。粘贴到 Prompt 中。

conda install pytorch torchvision torchaudio cpuonly -c pytorch
  1. 验证 PyTorch 是否正确安装:
    import torch 
    print(torch.__version__) 
    

步骤 4: 安装特定版本的 PyTorch

如果你需要安装特定版本的 PyTorch,可以使用 PyTorch 的官方安装命令生成器。访问 PyTorch 官方网站。找到对应的命令

例如,如果你想安装 PyTorch 2.2.2 版本(Windows CPU)
在这里插入图片描述

你可以使用以下命令:

conda install pytorch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 cpuonly -c pytorch

在这里插入图片描述
······
在这里插入图片描述
或者使用 pip:

pip install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 --index-url https://download.pytorch.org/whl/cpu

步骤 5: 安装最新版本的 DGL

接下来,我们将安装最新版本的 DGL。

这个命令在DGL官网可以找到

  1. 使用 pip 安装最新版本的 DGL:
    在这里插入图片描述

选择你需要的配置,然后生成安装命令。粘贴到 Prompt 中。

conda install -c dglteam dgl        
#pip install dgl   #或者直接这个应该也可以     

步骤 6: 安装特定版本的 DGL

如果你需要安装特定版本的 DGL,
第一步,查看你可以安装的dgl版本

# 查看可以使用的dgl版本
conda search dgl -c dglteam

在这里插入图片描述

选择想安装的版本。例如,如果你想安装 DGL 0.4.3 版本,你可以使用以下命令:

# 例如安装1.1.2版本的
conda install -c dglteam dgl=1.1.2

在这里插入图片描述

在这里,如果你安装后运行步骤七报错,可能是版本不兼容。 推荐 这篇博客 ,可照此法,反复试探。

经试探,python3.8 可以安装的最高版本分别为 pytorch2.2.2 和dgl1.1.2 ( 对应步骤四和六 )

步骤 7: Pycharm中使用虚拟环境解释器

第一种情况:创建新项目

在这里插入图片描述

注意:Conda 可执行文件 安装路径\anaconda3\Scripts\conda.exe

第二种情况:已有项目或文件

  1. 打开刚才写好的文件或者任意一个文件
    点击 文件->设置
    在这里插入图片描述
  2. 项目:项目名:项目名称->Python解释器
    添加解释器->本地解释器
    在这里插入图片描述
    在这里插入图片描述

注意:Conda 可执行文件 安装路径\anaconda3\Scripts\conda.exe

步骤 8: 验证安装

现在,我们可以验证 PyTorch 和 DGL 是否正确安装并运行一个简单的测试。

  1. 运行以下 Python 代码:

    import torch
    torch.cuda.is_available()
    print(torch.__version__)import dgl
    print('DGL version:', dgl.__version__)# 创建一个简单的图
    def simple_graph():import dglimport torch# 定义节点和边nodes = torch.tensor([0, 1, 2, 3])edges_src = torch.tensor([0, 1, 2])edges_dst = torch.tensor([1, 2, 3])# 创建图  g = dgl.graph((edges_src, edges_dst))  g.ndata['h'] = torch.randn((g.num_nodes(), 10))  return g  g = simple_graph()  
    print(g)  
    
  2. 运行结果如图:

在这里插入图片描述

结论

博主现在使用的是 python3.8 , pytorch2.2.2 和dgl1.1.2 ( 对应步骤四和六)

最高版本的pytorch2.4.1和最高版本的dgl 2.2.x不兼容,会报错哦~

通过以上步骤,你可以在新的 Anaconda 环境中成功安装并配置 PyTorch 和 DGL。这些工具将为你在图神经网络领域的研究和开发提供强大的支持。

相关文章:

新手上路:Anaconda虚拟环境创建和配置以使用PyTorch和DGL

文章目录 前言步骤 1: 安装 Anaconda步骤 2: 创建新的 Anaconda 环境步骤 3: 安装最新版本的 PyTorch步骤 4: 安装特定版本的 PyTorch步骤 5: 安装最新版本的 DGL步骤 6: 安装特定版本的 DGL步骤 7: Pycharm中使用虚拟环境解释器第一种情况:创建新项目第二种情况&am…...

centos7系统安装宝塔面板

1、开始安装 适用系统 Centos/OpenCloud/Alibaba 稳定版9.0.0 urlhttps://download.bt.cn/install/install_lts.sh;if [ -f /usr/bin/curl ];then curl -sSO $url;else wget -O install_lts.sh $url;fi;bash install_lts.sh ed8484bec等待命令执行,安装完成&#…...

汽车总线之----J1939总线

instruction SAE J1939 是由美国汽车工程协会制定的一种总线通信协议标准,广泛应用于商用车,船舶,农林机械领域中,J1939协议是基于CAN的高层协议,我们来看一下两者之间的关系。在J1939 中,物理层和数据链路…...

基于skopt的贝叶斯优化基础实例学习实践

贝叶斯方法是非常基础且重要的方法,在前文中断断续续也有所介绍,感兴趣的话可以自行移步阅读即可: 《数学之美番外篇:平凡而又神奇的贝叶斯方法》 《贝叶斯深度学习——基于PyMC3的变分推理》 《模型优化调参利器贝叶斯优化bay…...

OJ在线评测系统 后端 用策略模式优化判题机架构

判题机架构优化(策略模式) 思考 我们的判题策略可能会有很多种 比如 我们的代码沙箱本身执行程序需要消耗时间 这个时间可能不同的编程语言是不同的 比如沙箱执行Java要额外花费2秒 我们可以采用策略模式 针对不同的情况 定义不同独立的策略 而不是把所有情况全部放在一个i…...

element ui 精确控制日期控件 date-picker

https://github.com/element-plus/element-plus/discussions/17378 -- 某组件 xxx.vue ... <el-date-pickerv-model"timeRange"type"daterange"range-separator"-"start-placeholder"开始日期"end-placeholder"结束日期"…...

centos7安装指定版本php及扩展

安装EPEL仓库&#xff08;如果尚未安装&#xff09; sudo yum install epel-release导入REMI仓库的公钥&#xff1a; sudo rpm --import http://rpms.remirepo.net/RPM-GPG-KEY-remi启用REMI仓库&#xff08;你可以选择PHP 7.0或者7.4&#xff0c;以下以7.0为例&#xff09;&am…...

后端-对表格数据进行添加、删除和修改

一、添加 要求&#xff1a; 按下添加按钮出现一个板块输入添加的数据信息&#xff0c;点击板块的添加按钮&#xff0c;添加&#xff1b;点击取消&#xff0c;板块消失。 实现&#xff1a; 1.首先&#xff0c;设计页面输入框格式&#xff0c;表格首行 2.从数据库里调数据 3.添加…...

【学习笔记】手写 Tomcat 七

目录 一、优化 Dao 1. 设置 UserDaoImpl 为单例模式 2. 创建 Dao 工厂 3. 在 Service 层获取 UserDao 的实例 二、优化 Service 1. 设置 UserServiceImpl 为单例模式 2. 创建 Service 工厂 3. 在 Servlet 层获取 Service 实现类的对象 三、优化 Servlet 1. 使用配置…...

QT开发:详解 Qt 多线程编程核心类 QThread:基本概念与使用方法

1. 引言 在现代应用程序开发中&#xff0c;多线程编程是一个关键技术&#xff0c;能够显著提高程序的效率和响应速度。Qt 是一个跨平台的 C 框架&#xff0c;其中 QThread 类是实现多线程编程的核心类。本文将深入详解 QThread 的基本概念、使用方法及其在实际应用中的重要性。…...

【芋道源码】gitee很火的开源项目pig——后台管理快速开发框架使用笔记(微服务版之本地开发环境篇)

后台管理快速开发框架使用笔记&#xff08;微服务版之本地开发环境篇&#xff09; 后台管理快速开发框架使用笔记&#xff08;微服务版之本地开发环境篇&#xff09; 后台管理快速开发框架使用笔记&#xff08;微服务版之本地开发环境篇&#xff09;前言一、如何获取项目&#…...

设计模式、系统设计 record part01

技术路线&#xff1a; 工程师》设计师》分析师》架构师 管理路线&#xff1a; 项目经理》技术经理 工程师&#xff1a; 编程技术、测试技术 设计师&#xff1a; 工程师设计技术 分析师&#xff1a; 设计师分析技术 架构师&#xff1a; 分析师架构技术 项目经理&#xff1a; 时间…...

服务器与普通电脑的区别是什么?

服务器作为企业进行线上业务所使用的网络设备&#xff0c;大多数的用户对于服务器都有一定的了解&#xff0c;而普通的电脑则是人们在进行日常娱乐活动中经常会用到的设备&#xff0c;本文就来探讨一下服务器与普通电脑之间的区别是什么吧&#xff01; 普通的电脑就是我们通常所…...

Vue3学习(六)Vue3 + ts几种写法

前言 官网提到组合式api和选项式api 选项式api其实就是vue2的写法&#xff0c;组合式api是vue3的新写法&#xff08;组合式api可以在script中使用setup&#xff08;&#xff09;也可以使用<script setup>&#xff0c;<script setup>是setup&#xff08;&#xff…...

【前端】ES6:Proxy代理和Reflect对象

文章目录 1 Proxy代理1.1 get方法1.2 set方法1.3 has方法1.4 this问题 2 Reflect对象2.1 代替Object的某些方法2.2 修改某些Object方法返回结果2.3 命令式变为函数行为2.4 配合Proxy 1 Proxy代理 Proxy如其名&#xff0c;它的作用是在对象和和对象的属性值之间设置一个代理&am…...

基于微信开发助手企鹅音乐微信小程序的设计与实现(源码+文档+讲解)

博主介绍&#xff1a; ✌我是阿龙&#xff0c;一名专注于Java技术领域的程序员&#xff0c;全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师&#xff0c;我在计算机毕业设计开发方面积累了丰富的经验。同时&#xff0c;我也是掘金、华为云、阿里云、InfoQ等平台…...

学习Spring Boot,应该从哪里开始学起

文章目录 前言1. Java基础2. Spring框架基础3. Spring Boot入门4. 搭建Spring Boot项目5. 编写RESTful API6. 数据库操作7. 安全性和测试8. 部署和运维9. 实践和项目总结前言 学习Spring Boot,应该从哪里开始学起 学习Spring Boot,你可以从以下几个步骤开始学起: 1. Java基…...

【JavaEE初阶】深入解析死锁的产生和避免以及内存不可见问题

前言&#xff1a; &#x1f308;上期博客&#xff1a;【后端开发】JavaEE初阶—线程安全问题与加锁原理&#xff08;超详解&#xff09;-CSDN博客 &#x1f525;感兴趣的小伙伴看一看小编主页&#xff1a;GGBondlctrl-CSDN博客 ⭐️小编会在后端开发的学习中不断更新~~~ &#…...

企微群管理软件:构建高效社群运营的新引擎

在数字化营销日益盛行的今天&#xff0c;企业微信&#xff08;简称“企微”&#xff09;群作为企业与用户直接互动的重要平台&#xff0c;其管理与运营效率直接关系到企业的品牌形象、用户满意度及市场影响力。企微群管理软件&#xff0c;作为专为企微社群设计的高效管理工具&a…...

CORE 中间件、wwwroot

ASP.NET Core中间件组件是被组装到应用程序管道中以处理HTTP请求和响应的软件组件&#xff08;从技术上来说&#xff0c;组件只是C&#xff03;类&#xff09;。 ASP.NET Core应用程序中的每个中间件组件都执行以下任务。 选择是否将 HTTP 请求传递给管道中的下一个组件。这可…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

测试微信模版消息推送

进入“开发接口管理”--“公众平台测试账号”&#xff0c;无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息&#xff1a; 关注测试号&#xff1a;扫二维码关注测试号。 发送模版消息&#xff1a; import requests da…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中&#xff0c;新增了一个本地验证码接口 /code&#xff0c;使用函数式路由&#xff08;RouterFunction&#xff09;和 Hutool 的 Circle…...