【机器学习】探索LSTM:深度学习领域的强大时间序列处理能力
目录
🍔 LSTM介绍
🍔 LSTM的内部结构图
2.1 LSTM结构分析
2.2 Bi-LSTM介绍
2.3 使用Pytorch构建LSTM模型
2.4 LSTM优缺点
🍔 小结
学习目标
🍀 了解LSTM内部结构及计算公式.
🍀 掌握Pytorch中LSTM工具的使用.
🍀 了解LSTM的优势与缺点.
🍔 LSTM介绍
LSTM(Long Short-Term Memory)也称长短时记忆结构, 它是传统RNN的变体, 与经典RNN相比能够有效捕捉长序列之间的语义关联, 缓解梯度消失或爆炸现象. 同时LSTM的结构更复杂,。
🐼 它的核心结构可以分为四个部分去解析:
- 遗忘门
- 输入门
- 细胞状态
- 输出门
🍔 LSTM的内部结构图
2.1 LSTM结构分析
- 结构解释图:
- 遗忘门部分结构图与计算公式:
-
遗忘门结构分析:
- 与传统RNN的内部结构计算非常相似, 首先将当前时间步输入x(t)与上一个时间步隐含状态h(t-1)拼接, 得到[x(t), h(t-1)], 然后通过一个全连接层做变换, 最后通过sigmoid函数进行激活得到f(t), 我们可以将f(t)看作是门值, 好比一扇门开合的大小程度, 门值都将作用在通过该扇门的张量, 遗忘门门值将作用的上一层的细胞状态上, 代表遗忘过去的多少信息, 又因为遗忘门门值是由x(t), h(t-1)计算得来的, 因此整个公式意味着根据当前时间步输入和上一个时间步隐含状态h(t-1)来决定遗忘多少上一层的细胞状态所携带的过往信息.
-
遗忘门内部结构过程演示:
- 激活函数sigmiod的作用:
- 用于帮助调节流经网络的值, sigmoid函数将值压缩在0和1之间.
- 输入门部分结构图与计算公式:
-
输入门结构分析:
- 我们看到输入门的计算公式有两个, 第一个就是产生输入门门值的公式, 它和遗忘门公式几乎相同, 区别只是在于它们之后要作用的目标上. 这个公式意味着输入信息有多少需要进行过滤. 输入门的第二个公式是与传统RNN的内部结构计算相同. 对于LSTM来讲, 它得到的是当前的细胞状态, 而不是像经典RNN一样得到的是隐含状态.
-
输入门内部结构过程演示:
- 细胞状态更新图与计算公式:
-
细胞状态更新分析:
- 细胞更新的结构与计算公式非常容易理解, 这里没有全连接层, 只是将刚刚得到的遗忘门门值与上一个时间步得到的C(t-1)相乘, 再加上输入门门值与当前时间步得到的未更新C(t)相乘的结果. 最终得到更新后的C(t)作为下一个时间步输入的一部分. 整个细胞状态更新过程就是对遗忘门和输入门的应用.
-
细胞状态更新过程演示:
- 输出门部分结构图与计算公式:
-
输出门结构分析:
- 输出门部分的公式也是两个, 第一个即是计算输出门的门值, 它和遗忘门,输入门计算方式相同. 第二个即是使用这个门值产生隐含状态h(t), 他将作用在更新后的细胞状态C(t)上, 并做tanh激活, 最终得到h(t)作为下一时间步输入的一部分. 整个输出门的过程, 就是为了产生隐含状态h(t).
-
输出门内部结构过程演示:
2.2 Bi-LSTM介绍
Bi-LSTM即双向LSTM, 它没有改变LSTM本身任何的内部结构, 只是将LSTM应用两次且方向不同, 再将两次得到的LSTM结果进行拼接作为最终输出.
- Bi-LSTM结构分析:
- 我们看到图中对"我爱中国"这句话或者叫这个输入序列, 进行了从左到右和从右到左两次LSTM处理, 将得到的结果张量进行了拼接作为最终输出. 这种结构能够捕捉语言语法中一些特定的前置或后置特征, 增强语义关联,但是模型参数和计算复杂度也随之增加了一倍, 一般需要对语料和计算资源进行评估后决定是否使用该结构.
2.3 使用Pytorch构建LSTM模型
-
位置: 在torch.nn工具包之中, 通过torch.nn.LSTM可调用.
-
nn.LSTM类初始化主要参数解释:
- input_size: 输入张量x中特征维度的大小.
- hidden_size: 隐层张量h中特征维度的大小.
- num_layers: 隐含层的数量.
- bidirectional: 是否选择使用双向LSTM, 如果为True, 则使用; 默认不使用.
-
nn.LSTM类实例化对象主要参数解释:
- input: 输入张量x.
- h0: 初始化的隐层张量h.
- c0: 初始化的细胞状态张量c.
-
nn.LSTM使用示例:
# 定义LSTM的参数含义: (input_size, hidden_size, num_layers)
# 定义输入张量的参数含义: (sequence_length, batch_size, input_size)
# 定义隐藏层初始张量和细胞初始状态张量的参数含义:
# (num_layers * num_directions, batch_size, hidden_size)>>> import torch.nn as nn
>>> import torch
>>> rnn = nn.LSTM(5, 6, 2)
>>> input = torch.randn(1, 3, 5)
>>> h0 = torch.randn(2, 3, 6)
>>> c0 = torch.randn(2, 3, 6)
>>> output, (hn, cn) = rnn(input, (h0, c0))
>>> output
tensor([[[ 0.0447, -0.0335, 0.1454, 0.0438, 0.0865, 0.0416],[ 0.0105, 0.1923, 0.5507, -0.1742, 0.1569, -0.0548],[-0.1186, 0.1835, -0.0022, -0.1388, -0.0877, -0.4007]]],grad_fn=<StackBackward>)
>>> hn
tensor([[[ 0.4647, -0.2364, 0.0645, -0.3996, -0.0500, -0.0152],[ 0.3852, 0.0704, 0.2103, -0.2524, 0.0243, 0.0477],[ 0.2571, 0.0608, 0.2322, 0.1815, -0.0513, -0.0291]],[[ 0.0447, -0.0335, 0.1454, 0.0438, 0.0865, 0.0416],[ 0.0105, 0.1923, 0.5507, -0.1742, 0.1569, -0.0548],[-0.1186, 0.1835, -0.0022, -0.1388, -0.0877, -0.4007]]],grad_fn=<StackBackward>)
>>> cn
tensor([[[ 0.8083, -0.5500, 0.1009, -0.5806, -0.0668, -0.1161],[ 0.7438, 0.0957, 0.5509, -0.7725, 0.0824, 0.0626],[ 0.3131, 0.0920, 0.8359, 0.9187, -0.4826, -0.0717]],[[ 0.1240, -0.0526, 0.3035, 0.1099, 0.5915, 0.0828],[ 0.0203, 0.8367, 0.9832, -0.4454, 0.3917, -0.1983],[-0.2976, 0.7764, -0.0074, -0.1965, -0.1343, -0.6683]]],grad_fn=<StackBackward>)
2.4 LSTM优缺点
-
LSTM优势:
LSTM的门结构能够有效减缓长序列问题中可能出现的梯度消失或爆炸, 虽然并不能杜绝这种现象, 但在更长的序列问题上表现优于传统RNN.
-
LSTM缺点:
由于内部结构相对较复杂, 因此训练效率在同等算力下较传统RNN低很多.
🍔 小结
-
LSTM(Long Short-Term Memory)也称长短时记忆结构, 它是传统RNN的变体, 与经典RNN相比能够有效捕捉长序列之间的语义关联, 缓解梯度消失或爆炸现象. 同时LSTM的结构更复杂, 它的核心结构可以分为四个部分去解析:
- 遗忘门
- 输入门
- 输出门
- 细胞状态
-
遗忘门结构分析:
与传统RNN的内部结构计算非常相似, 首先将当前时间步输入x(t)与上一个时间步隐含状态h(t-1)拼接, 得到[x(t), h(t-1)], 然后通过一个全连接层做变换, 最后通过sigmoid函数进行激活得到f(t), 我们可以将f(t)看作是门值, 好比一扇门开合的大小程度, 门值都将作用在通过该扇门的张量, 遗忘门门值将作用的上一层的细胞状态上, 代表遗忘过去的多少信息, 又因为遗忘门门值是由x(t), h(t-1)计算得来的, 因此整个公式意味着根据当前时间步输入和上一个时间步隐含状态h(t-1)来决定遗忘多少上一层的细胞状态所携带的过往信息.
-
输入门结构分析:
我们看到输入门的计算公式有两个, 第一个就是产生输入门门值的公式, 它和遗忘门公式几乎相同, 区别只是在于它们之后要作用的目标上. 这个公式意味着输入信息有多少需要进行过滤. 输入门的第二个公式是与传统RNN的内部结构计算相同. 对于LSTM来讲, 它得到的是当前的细胞状态, 而不是像经典RNN一样得到的是隐含状态.
-
细胞状态更新分析:
细胞更新的结构与计算公式非常容易理解, 这里没有全连接层, 只是将刚刚得到的遗忘门门值与上一个时间步得到的C(t-1)相乘, 再加上输入门门值与当前时间步得到的未更新C(t)相乘的结果. 最终得到更新后的C(t)作为下一个时间步输入的一部分. 整个细胞状态更新过程就是对遗忘门和输入门的应用.
-
输出门结构分析:
输出门部分的公式也是两个, 第一个即是计算输出门的门值, 它和遗忘门,输入门计算方式相同. 第二个即是使用这个门值产生隐含状态h(t), 他将作用在更新后的细胞状态C(t)上, 并做tanh激活, 最终得到h(t)作为下一时间步输入的一部分. 整个输出门的过程, 就是为了产生隐含状态h(t).
-
什么是Bi-LSTM ?
Bi-LSTM即双向LSTM, 它没有改变LSTM本身任何的内部结构, 只是将LSTM应用两次且方向不同, 再将两次得到的LSTM结果进行拼接作为最终输出.
-
Pytorch中LSTM工具的使用:
位置: 在torch.nn工具包之中, 通过torch.nn.LSTM可调用.
-
LSTM优势:
LSTM的门结构能够有效减缓长序列问题中可能出现的梯度消失或爆炸, 虽然并不能杜绝这种现象, 但在更长的序列问题上表现优于传统RNN.
-
LSTM缺点:
由于内部结构相对较复杂, 因此训练效率在同等算力下较传统RNN低很多.
相关文章:

【机器学习】探索LSTM:深度学习领域的强大时间序列处理能力
目录 🍔 LSTM介绍 🍔 LSTM的内部结构图 2.1 LSTM结构分析 2.2 Bi-LSTM介绍 2.3 使用Pytorch构建LSTM模型 2.4 LSTM优缺点 🍔 小结 学习目标 🍀 了解LSTM内部结构及计算公式. 🍀 掌握Pytorch中LSTM工具的使用. &…...

QT学习笔记之文件操作
你千万不要跟任何人谈起任何事。你只要一谈起,就会想念起每一个人来。 在ui界面添加一个LineEdit(lEt)、QPushButton(btn)、QWidget widget.cpp #include "widget.h" #include "ui_widget.h" #include <QFile> #include <QFileDialo…...
Mybatis XML配置文件操作数据库
Mybaits在操作数据库时,可以有两种方式;第一种是使用注解的方式操作,另一种是使用XML配置文件的方式:一般而言,若没有特别的要求,则编写一些简单的SQL语句,可以直接使用注解的方式;编…...

Ansible-template模块动态生成特定文件
文章目录 一、Jinja2介绍什么是主要特性安装基本用法进阶特性总结 Jinja2与Ansible关系1. 模板引擎2. Ansible 的依赖3. 变量和模板4. 动态生成配置5. 社区和生态系统总结 二、Ansible如何使用Jinja2使用template模块Jinja2文件中使用判断和循环Jinja2文件中使用判断语法 Jinja…...

【Hadoop】【vim编辑器】【~/.bashrc 文件】如何编辑
1. 进入 vim 编辑器 在终端中输入以下命令: vim ~/.bashrc 2. 进入插入模式 打开文件后,你将处于普通模式。在普通模式下,你不能直接编辑文本。 要进入插入模式,请按下 i 键。这时,你应该会看到屏幕底部出现 -- 插…...

vs code自动报错
让vs code自动报错, 点击插件 → 搜索error lens → 点击install, 下载完后,编写的代码有问题就会自动报错了。 5、修改默认缩进字符 点击设置(settings) → 点击常用设置 → 修改字符缩进。...

详细分析Nginx中的proxy_pass 末尾斜杠
目录 前言1. 基本知识2. Demo 前言 对于Nginx的讲解,更多推荐阅读: Nginx配置静态网页访问(图文界面)Nginx将https重定向为http进行访问的配置(附Demo)Nginx从入门到精通(全)详细分…...
数据结构:双指针—移动0(OJ283)
给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。 请注意 ,必须在不复制数组的情况下原地对数组进行操作。 示例 1: 输入: nums [0,1,0,3,12] 输出: [1,3,12,0,0]示例 2: 输入: nums [0] 输出: […...

LeetCode - 850 矩形面积 II
题目来源 850. 矩形面积 II - 力扣(LeetCode) 题目描述 给你一个轴对齐的二维数组 rectangles 。 对于 rectangle[i] [x1, y1, x2, y2],其中(x1,y1)是矩形 i 左下角的坐标, (xi1, yi1) 是该…...

Jenkins Pipeline 中通过勾选参数来控制是否构建 Docker 镜像
1.定义参数: 使用 booleanParam 定义一个布尔参数,示例如下 booleanParam(name: BUILD_DOCKER, description: 是否构建Docker镜像, defaultValue: false)2.使用参数: 在 stage 中,根据参数的值决定构建方式: stage(编…...

C++入门基础知识86(实例)——实例11【计算自然数之和】
成长路上不孤单😊😊😊😊😊😊 【14后😊///C爱好者😊///持续分享所学😊///如有需要欢迎收藏转发///😊】 今日分享关于计算自然数之和相关内容! 关…...
ChatGPT与R语言融合技术在生态环境数据统计分析、绘图、模型中的实践与进阶应用
自2022年GPT(Generative Pre-trained Transformer)大语言模型的发布以来,它以其卓越的自然语言处理能力和广泛的应用潜力,在学术界和工业界掀起了一场革命。在短短一年多的时间里,GPT已经在多个领域展现出其独特的价值…...

OpenAi以及Dify结合生成Ai模型
文章目录 1、Dify介绍2、使用 Dify3、部署Docker1.系统要求2.系统虚拟化3.下载docker 4、安装WSL1.检查是否已经安装 五、访问系统六、添加模型 1、Dify介绍 Dify官方地址。 Dify 是一个开源的 LLM 应用开发平台。其直观的界面结合了 AI 工作流、RAG 管道、Agent、模型管理、…...
【漏洞复现】用友 UFIDA /portal/pt/file/upload 任意文件上传漏洞
免责声明: 本文内容旨在提供有关特定漏洞或安全漏洞的信息,以帮助用户更好地了解可能存在的风险。公布此类信息的目的在于促进网络安全意识和技术进步,并非出于任何恶意目的。阅读者应该明白,在利用本文提到的漏洞信息或进行相关测试时,可能会违反某些法律法规或服…...

C:内存函数
目录 前言: 一、memcpy 函数的使用及实现 1、memcpy函数的介绍 1.1 memcpy函数参数解读 2、memcpy函数的使用 3、memcpy函数的模拟实现 二、memmove函数的使用及模拟 1、memmove函数的使用 2、memmove函数的模拟实现 三、memset 函数的使用 1、memset函数的…...

【Web】御网杯信息安全大赛2024 wp(全)
目录 input_data admin flask 如此多的FLAG 一夜醒来之全国CTF水平提升1000倍😋 input_data 访问./.svn后随便翻一翻拿到flag admin dirsearch扫出来 访问./error看出来是java框架 测出来是/admin;/路由打Spring View Manipulation(Java)的SSTI https:/…...
VC++同时处理ANSI和Unicode字符集,除了使用TCHAR和_T()宏外,还有其他方法可以实现吗?
在我的C项目中,如果我需要同时处理ANSI和Unicode字符集,除了使用TCHAR和_T()宏外,还有其他方法可以实现吗? 除了使用 TCHAR 和 _T() 宏之外,还有其他方法可以实现同时处理 ANSI 和 Unicode 字符集: 1. 使用…...

MATLAB定位程序与讲解【专栏介绍】
AOA(到达角度)定位原理: 描述了基于到达角度进行定位的方法,适用于一维、二维或三维空间。 由动静压之比求马赫数的MATLAB函数: 提供了一个计算马赫数的函数,用于流体力学中速度的计算。 三边法定位与三点法…...
机器学习3--numpy
Numpy 一、numpy是什么?二、N维数组三、数组基本操作四、数组的运算 一、numpy是什么? numpy是一个开源的python科学计算库,用于处理任意维度的数组。numpy用ndarray处理多维数组。 import numpy as np np.array创建数组 机器学习数据量很大…...

Linux之我不会
一、常用命令 1.系统管理 1.1 systemctl start | stop | restart | status 服务名 案例实操 1 查看防火墙状态 systemctl status firewalld2 停止防火墙服务 systemctl stop firewalld3 启动防火墙服务 systemctl start firewalld4 重启防火墙服务 systemctl restart f…...
Java 语言特性(面试系列1)
一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建
华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...

SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险
C#入门系列【类的基本概念】:开启编程世界的奇妙冒险 嘿,各位编程小白探险家!欢迎来到 C# 的奇幻大陆!今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类!别害怕,跟着我,保准让你轻松搞…...