当前位置: 首页 > news >正文

机器学习3--numpy

Numpy

  • 一、numpy是什么?
  • 二、N维数组
  • 三、数组基本操作
  • 四、数组的运算

一、numpy是什么?

  1. numpy是一个开源的python科学计算库,用于处理任意维度的数组。
  2. numpy用ndarray处理多维数组。

import numpy as np
np.array创建数组

  1. 机器学习数据量很大,ndarray速度快。
  2. ndarray的优势:
    • 内存块风格,一体式存储,数据类型一样(存储数据地址连续,直接存取,不需要找地址);
    • 支持并行化运算;
    • 效率高于python

二、N维数组

数组属性

.shape
.ndim 数组维数
.size 元素数量
.itemsize 元素字节大小
.dtype 元素类型

import numpy as np
a = np.array(["python","hello","i"],dtype = np.string_)
#指定类型

三、数组基本操作

  1. 生成数组

(1)0,1数组,固定范围数组

import numpy as np
#生成0、1数组
ones = np.ones([4,8])
np.zeros_like(ones)
#生成现有数组
a = np.array([[1,2,3],[4,5,6]])
a1 = np.array(a)#深拷贝
a2 = np.asarray(a)#浅拷贝
a[0,0]=1000###a1不变;a2改变
#生成固定范围数组
np.linspace(0,100,10)#等差数组,指定差值
np.arange(10,50,2)#等差数组,指定步长
np.logspace(0,2,3)#10的次方

(2) 正态分布

import numpy as np
import matplotlib.pyplot as plt
#生成正太分布
x1 = np.random.normal(1.75,1,1000)
plt.figure(figsize=(20,8),dpi=100)
plt.hist(x1,100)
plt.show()

(3) 均匀分布

import numpy as np
import matplotlib.pyplot as plt
#生成正太分布
x1 = np.random.uniform(-1,1,1000)
plt.figure(figsize=(20,8),dpi=100)
plt.hist(x2,100)
plt.show()
  1. 数组的索引、切片
    对象[:,:] 先行后列

  2. 数组的形状修改
    (1)reshape 展成一行,重新排列
    (2)resize
    (3)T 转置

  3. 数组的类型修改

ndarray.astype(type)
ndarray.tostring()

  1. 数组的去重

np.unique()

四、数组的运算

  1. 逻辑运算
    大于小于和赋值。
    大于号可以直接判断数组里的值,赋值在判断结果说赋值
#生成10名同学,5门功课的数据
score=np.random.randint(40,100,(10,5))
#取出最后4名同学的成绩,
用于逻辑判断
test_score = score[6:,0:5]
#逻辑判断,如果成绩大于60就标记为True否则为False
test_score > 60
array([[True,True,True,False,True],
[True,True,True,False,True],
[True,True,False,False,True],
[False,True,True,True,True]])
#B00L赋值,将满足条件的设置为指定的值-布尔索引
test_score[test_score > 60] = 1
test_score
array([1,1,1,59,1],
[1,1,1,59,1],
[1,1,44,44,1],
[59,1,1,1,1]])
  1. 通用函数
    np.all, np.any

#判断前两名同学的成绩[0:2,:]是否全及格
np.all(score[0:2,:]>60)
False
#判断前两名同学的成绩[0:2,:]是否有大于90分的
np.any(scoret[0:2,:]>90)
True

  1. 数组与数值运算,对数组中所有值都与数值运算;注意,对列表运算,乘积会复制粘贴
  2. 数组与数组运算
    广播机制:数组在进行矢量化运算时,要求数组的形状是相等的。当形状不相等的数组执行算术运算的时候,就会出现广播机制,该机制会对数组进行扩展,使数组的shape属性值一样,这样,就可以进行矢量化运算了。下面通过一个例子进行说明:
arr1=np.array([[0],[1],[2],[3])
arr1.shape
#(4,1)
arr2 np.array([1,2,3])
arr2.shape
#(3,)
arrl+arr2
#结果是
array([[1,2,3],
[2,3,4],
[3,4,5],
[4,5,6])

广播机制实现了时两个或两个以上数组的运算,即使这些数组的shape不是完全相同的,只需要满足如下任意一个条件即可。

  • 数组的某一维度等长。
  • 其中一个数组的某一维度为1。

广播机制需要扩展维度小的数组,使得它与维度最大的数组的shape值相同,以便使用元素级函数或者运算符进行运算。

相关文章:

机器学习3--numpy

Numpy 一、numpy是什么?二、N维数组三、数组基本操作四、数组的运算 一、numpy是什么? numpy是一个开源的python科学计算库,用于处理任意维度的数组。numpy用ndarray处理多维数组。 import numpy as np np.array创建数组 机器学习数据量很大…...

Linux之我不会

一、常用命令 1.系统管理 1.1 systemctl start | stop | restart | status 服务名 案例实操 1 查看防火墙状态 systemctl status firewalld2 停止防火墙服务 systemctl stop firewalld3 启动防火墙服务 systemctl start firewalld4 重启防火墙服务 systemctl restart f…...

音视频整体解码流程和同步流程

目录 1. 整体解码流程1. 初始化 FFmpeg2. 打开媒体文件3. 查找解码器4. 打开解码器5. 读取和解码数据6. 处理解码后的帧7. 释放资源 2. 音视频同步整体流程1. 解复用媒体流2. 解码3. 以音频为时钟源进行音视频同步的策略4. 缓冲区设计 现在先说大体流程,不分析代码 …...

1.2 HuggingFists安装说明-Linux安装

Linux版安装说明 下载地址 【GitHub】https://github.com/Datayoo/HuggingFists 【百度网盘】https://pan.baidu.com/s/12-qzxARjzRjYFvF8ddUJQQ?pwd2024 安装说明 环境要求 操作系统:CentOS7 硬件环境:至少4核8G,系统使用Containerd…...

四,MyBatis-Plus 当中的主键策略和分页插件的(详细实操使用)

四,MyBatis-Plus 当中的主键策略和分页插件的(详细实操使用) 文章目录 四,MyBatis-Plus 当中的主键策略和分页插件的(详细实操使用)1. 主键策略1.1 主键生成策略介绍 2. 准备工作:2.1 AUTO 策略2.2 INPUT 策略2.3 ASSIGN_ID 策略2.3.1 雪花算…...

Win32打开UWP应用

最近无意间发现Windows里一个神奇的文件夹。 shell:appsfolder 运行打开 这个文件夹后,你可以看到本机安装的所有应用程序。 我觉得这个挺方便的,所以做了一个简单的appFolderDialog包给C#用 项目地址:https://github.com/TianXiaTech/App…...

C# C++ 笔记

第一阶段知识总结 lunix系统操作 1、基础命令 (1)cd cd /[目录名] 打开指定文件目录 cd .. 返回上一级目录 cd - 返回并显示上一次目录 cd ~ 切换到当前用户的家目录 (2)pwd pwd 查看当前所在目录路径 pwd -L 打印当前物理…...

关于最小二乘法

最小二乘法的核心思想简单而优雅:我们希望找到一条最佳的曲线,使其尽可能贴近所有的数据点。想象一下,当你在画布上描绘一条线,目标是让这条线与点的距离最小。数学上,这可以表示为: 在这个公式中&#xff…...

国产OpenEuler与Centos全面之比较

OpenEuler 和 CentOS 都是流行的 Linux 发行版,但它们有一些关键的区别。以下是 OpenEuler 和 CentOS 的全面比较: 1. 起源和支持: - OpenEuler:由华为公司支持,中国开源社区主导开发的操作系统,旨在构建一…...

Java面试题一

一、Java语言有哪些特性? Java语言具有多种特性,这些特性使得Java成为一种广泛使用的编程语言。以下是Java语言的一些主要特性: 面向对象(Object-Oriented): Java是一种纯面向对象的编程语言。它支持类&…...

LabVIEW提高开发效率技巧----自动化测试和持续集成

在大型项目中,自动化测试和持续集成是提高开发效率和代码质量的关键手段。通过这些技术,开发者能够在开发的早期阶段快速发现问题,减少后期调试的工作量,并且能够确保代码的稳定性和可维护性。以下是这两个概念如何在LabVIEW开发中…...

开源链动 2+1 模式 S2B2C 商城小程序:激活 KOC,开启商业新征程

摘要:本文深入探讨了 KOC 在立体连接中的重要性,以及如何通过开源链动 21 模式 S2B2C 商城小程序发现和找到更多的 KOC。强调了历史积累强关系和快速强化强关系的方法,并阐述了该商城小程序在推动商业发展中的关键作用。 一、引言 在当今竞争…...

什么是Node.js?

为什么JavaScript可以在浏览器中被执行? 在浏览器中我们加载了一些待执行JS代码,这些字符串要当中一个代码去执行,是因为浏览器中有JavaScript的解析引擎,它的存在我们的代码才能被执行。 不同的浏览器使用不同的javaScript解析引…...

即插即用篇 | DenseNet卷土重来! YOLOv8 引入全新密集连接卷积网络 | ECCV 2024

本改进已同步到YOLO-Magic框架! 本文重新审视了密集连接卷积网络(DenseNets),并揭示了其在主流的ResNet风格架构中被低估的有效性。我们认为,由于未触及的训练方法和传统设计元素没有完全展现其能力,DenseNets的潜力被忽视了。我们的初步研究表明,通过连接实现的密集连接…...

智能监控,守护绿色能源:EasyCVR在电站视频监控中心的一站式解决方案

随着科技的飞速发展,视频监控技术在社会安全、企业管理及智慧城市建设等领域中扮演着越来越重要的角色。特别是在电力行业中,电站作为能源供应的关键设施,其安全性和稳定性至关重要。传统的人工监控方式已难以满足现代电站复杂多变的运行需求…...

【BUG】静读天下|静读天下无法设置段间距解决方案

【BUG】静读天下|静读天下无法设置段间距解决方案 文章目录 【BUG】静读天下|静读天下无法设置段间距解决方案前言解决办法 凑质量分静读天下的特点与优势功能布局与使用技巧个人使用心得结语 前言 03-23 求助|关于排版的问题【静读天下吧】_…...

希捷电脑硬盘好恢复数据吗?探讨可能性、方法以及注意事项

在数字化时代,数据已成为我们生活和工作中不可或缺的一部分。希捷电脑硬盘作为数据存储的重要设备,承载着大量的个人文件、工作资料以及珍贵回忆。然而,面对硬盘故障或误操作导致的数据丢失,许多用户不禁要问:希捷电脑…...

java通过webhook给飞书发送群消息

现在使用飞书的人越来越多了,飞书有一个最大的好处,可以使用webhook简便的发送群消息。而在工作中,也经常会因为一些运维方面的工作,需要给飞书发送群消息,来实时提醒相关负责人,及时处理工作。 一、先看一下效果吧&a…...

每日一题——第一百零九题

题目&#xff1a;进制转换合集。任意r进制与十进制之间的转换 #include<stdio.h> #include<stdlib.h> #include<string.h> #include<ctype.h> long stringToDecimal(const char* str, int base); void convertToBaseR(int num, int r);int main() {ch…...

街头摊贩检测系统源码分享

街头摊贩检测检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of Computer Vis…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络&#xff0c;将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具&#xff0c;支持 Chrome、Firefox、Safari 等主流浏览器&#xff0c;提供多语言 API&#xff08;Python、JavaScript、Java、.NET&#xff09;。它的特点包括&a…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机&#xff0c;因为在使用过程中发现 Airsim 对外部监控相机的描述模糊&#xff0c;而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置&#xff0c;最后在源码示例中找到了&#xff0c;所以感…...

FFmpeg:Windows系统小白安装及其使用

一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】&#xff0c;注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录&#xff08;即exe所在文件夹&#xff09;加入系统变量…...

解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist

现象&#xff1a; android studio报错&#xff1a; [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决&#xff1a; 不要动CMakeLists.…...

pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)

目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 &#xff08;1&#xff09;输入单引号 &#xff08;2&#xff09;万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...

wpf在image控件上快速显示内存图像

wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像&#xff08;比如分辨率3000*3000的图像&#xff09;的办法&#xff0c;尤其是想把内存中的裸数据&#xff08;只有图像的数据&#xff0c;不包…...