力扣9.23
1014. 最佳观光组合
给你一个正整数数组 values,其中 values[i] 表示第 i 个观光景点的评分,并且两个景点 i 和 j 之间的 距离 为 j - i。
一对景点(i < j)组成的观光组合的得分为 values[i] + values[j] + i - j ,也就是景点的评分之和 减去 它们两者之间的距离。
返回一对观光景点能取得的最高分。
数据范围
2 <= values.length <= 5 * 1041 <= values[i] <= 1000
分析
若遍历,复杂度达到O(n^2),此时会T,因此考虑优化,使用双指针,对于下标为r,去找下表比他小的贡献最大的值,用last记录其下表,接下来考虑怎么找这个last,对于下表i<j<r,若是value[j]+(j-i)>value[i],此时j的贡献值更大,而且若下标j此时贡献最大,则若r往右移动,比j小的下标不可能贡献比他还大,具体看代码
代码
class Solution {
public:int maxScoreSightseeingPair(vector<int>& values) {int n = values.size();int l = 0, last = 0;int ans = 0;for(int r = 0; r < n; r ++ ) {while(l < r) {if(values[l] + (l - last) >= values[last]) {last = l;}l ++ ;}if(r != last)ans = max(ans, values[r] + values[last] - (r - last));}return ans;}
};
130. 被围绕的区域
给你一个 m x n 的矩阵 board ,由若干字符 'X' 和 'O' 组成,捕获 所有 被围绕的区域:
连接:一个单元格与水平或垂直方向上相邻的单元格连接。
区域:连接所有 ‘O’ 的单元格来形成一个区域。
围绕:如果您可以用 ‘X’ 单元格 连接这个区域,并且区域中没有任何单元格位于 board 边缘,则该区域被 ‘X’ 单元格围绕。
通过将输入矩阵 board 中的所有 ‘O’ 替换为 ‘X’ 来 捕获被围绕的区域。
数据范围
m == board.lengthn == board[i].length1 <= m, n <= 200board[i][j] 为 'X' 或 'O'
分析
dfs找连通块
代码
typedef pair<int, int> PII;
class Solution {
public:const static int N = 205;int n, m;int dx[4] = {0, 1, 0, -1};int dy[4] = {1, 0, -1, 0};bool vis[N][N];bool flag = true;void dfs(int x, int y, vector<vector<char>>& board, vector<PII> &tmp) {if(x < 0 || y < 0 || x >= n || y >= m) return ;if(vis[x][y]) return ;if(board[x][y] == 'X') return ;if(x == 0 || y == 0 || x == n - 1 || y == m - 1) flag = false;vis[x][y] = true;tmp.push_back({x, y});for(int i = 0; i < 4; i ++ ) {int nx = x + dx[i];int ny = y + dy[i];dfs(nx, ny, board, tmp);}return ;}void solve(vector<vector<char>>& board) {n = board.size();m = board[0].size();for(int i = 0; i < n; i ++ ) {for(int j = 0; j < m; j ++ ) {if(!vis[i][j] && board[i][j] == 'O') {flag = true;vector<PII> tmp;dfs(i, j, board, tmp);// cout << i << " " << j << " " << flag << endl;if(flag) {for(auto k : tmp) {board[k.first][k.second] = 'X';}}}}}}
};
相关文章:
力扣9.23
1014. 最佳观光组合 给你一个正整数数组 values,其中 values[i] 表示第 i 个观光景点的评分,并且两个景点 i 和 j 之间的 距离 为 j - i。 一对景点(i < j)组成的观光组合的得分为 values[i] values[j] i - j ,…...
[Redis][事务]详细讲解
目录 0.什么是事务?1.Redis 事务本质2.Redis 事务意义3.事务操作1.MULTI2.EXEC3.DISCARD4.WATCH5.UNWATCH 0.什么是事务? Redis的事务和MySQL的事务概念上是类似的,都是把一系列操作绑定成一组,让这一组能够批量执行Redis事务和M…...
Latex——一行的划线 如何分开
代码: \cmidrule(r){3-4} \cmidrule(r){5-6} \cmidrule(r){7-8}效果: 参考文章: LaTeX技巧653:如何隔开LaTeX表格邻近\cline表格线?...
大数据:快速入门Scala+Flink
一、什么是Scala Scala 是一种多范式编程语言,它结合了面向对象编程和函数式编程的特性。Scala 这个名字是“可扩展语言”(Scalable Language)的缩写,意味着它被设计为能够适应不同规模的项目,从小型脚本到大型分布式…...
侧边菜单的展开和折叠
环境准备:Vue3Element-UI Plus <script setup> import {ref} from "vue";// 是否折叠菜单,默认折叠 const isCollapse ref(true)</script><template><el-container><el-aside><el-menu:collapse"isCo…...
自动化办公-Python中的for循环
for 循环是 Python 中用于迭代(遍历)序列(如列表、元组、字典、集合、字符串)或其他可迭代对象的控制结构。它允许您逐一访问序列中的每个元素,并对其执行操作。以下是对 for 循环的详细介绍,包括语法、使用…...
Python_itertools
itertools itertools.count(start, step) 返回一个无限迭代器,从指定的start开始,每次增加step。 import itertools # 从1开始,每次增加1,输出前5个数 for i in itertools.count(1, 1):if i > 5:breakprint(i)运行结果&#…...
Apache Iceberg 数据类型参考表
Apache Iceberg 概述-链接 Apache Iceberg 数据类型参考表 数据类型描述实例方法注意事项BOOLEAN布尔类型,表示真或假true, false用于条件判断,例如 WHERE is_active true。确保逻辑条件的正确性。INTEGER32位有符号整数42, -7可用于计算、聚合…...
职责链模式
职责链模式 责任链(Chain of Responsibility)模式:为了避免请求发送者与多个请求处理者耦合在一起,于是将所有请求的处理者通过前一对象记住其下一个对象的引用而连成一条链;当有请求发生时,可将请求沿着这…...
新品 | Teledyne FLIR IIS 推出Forge 1GigE SWIR 短波红外工业相机系列
近日,51camera的合作伙伴Teledyne FLIR IIS推出了新品Forge 1GigE SWIR 130万像素的红外相机。 Forge 1GigE SWIR系列的首款相机配备宽频带、高灵敏度的Sony SenSWIR™️ 130万像素IMX990 InGaAs传感器。这款先进的传感器采用5um像素捕捉可见光和SWIR光谱ÿ…...
深入MySQL:掌握索引、事务、视图、存储过程与性能优化
在掌握了MySQL的基本操作之后,你可能会遇到更复杂的数据管理和优化需求。本文将介绍一些MySQL的进阶特性,包括索引、事务、视图、存储过程和函数、以及性能优化等内容。通过学习这些高级功能,你可以更高效地管理和优化你的数据库。 索引 索…...
【WSL——Windows 上使用 Linux 环境】
引入 以前在windows上使用linux工具链,一般都要安装虚拟机(VMware/virtualBox)。虚拟机的缺点是,因为是完整的虚拟环境,消耗系统资源比较多。 windows自己开发了WSL功能,实现了虚拟机的功能,但是比虚拟机性…...
Redis:事务
什么是Redis事务 Redis 事务的本质是一组命令的集合。事务支持一次执行多个命令,一个事务中所有命令都会被序列化。在事务执行过程,会按照顺序串行化执行队列中的命令,其他客户端提交的命令请求不会插入到事务执行命令序列中。 总结说&…...
策略模式的介绍和具体实现
❤ 作者主页:李奕赫揍小邰的博客 ❀ 个人介绍:大家好,我是李奕赫!( ̄▽ ̄)~* 🍊 记得点赞、收藏、评论⭐️⭐️⭐️ 📣 认真学习!!!🎉🎉 文章目录 策略接口三种…...
MySQL InnoDB MVCC数据结构分析
1、概述 MVCC(Multiversion Concurrency Control)多版本并发控制,通过维护不同的版本号,提供一种很好的并发控制技术,这种技术能够使读写操作不冲突,提升并发性能。 MySQL InnoDB存储引擎,在更…...
MySQL 8 查看 SQL 语句的执行进度
目录 1. 查询各阶段执行进度 (1)开启收集与统计汇总执行阶段信息的功能 (2)确定执行的SQL所属的thread_id (3)查询各阶段的执行进度 2. 查询SQL语句的整体执行进度 1. 查询各阶段执行进度 ࿰…...
OpenStack 部署实践与原理解析 - Ubuntu 22.04 部署 (DevStack)
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言OpenStack 原理详解1. OpenStack 的架构2. OpenStack 的工作原理3. OpenStack 的 API4. 扩展性和模块化 OpenStack 安装方式比较1. DevStack2. Kolla3. OpenSta…...
【软件工程】可行性研究
一、目的 二、任务 三、步骤 四、结果:可行性研究报告 例题 选择题...
乌克兰因安全风险首次禁用Telegram
据BleepingComputer消息,乌克兰国家网络安全协调中心 (NCCC) 以国家安全为由,已下令限制在政府机构、军事单位和关键基础设施内使用 Telegram 消息应用程序。 这一消息通过NCCC的官方 Facebook 账号对外发布,在公告中乌…...
[SDX35]SDX35如何查看GPIO的Base值
SDX35 SDX35介绍 SDX35设备是一种多模调制解调器芯片,支持 4G/5G sub-6 技术。它是一个4nm芯片专为实现卓越的性能和能效而设计。它包括一个 1.9 GHz Cortex-A7 应用处理器。 SDX35主要特性 ■ 3GPP Rel. 17 with 5G Reduced Capability (RedCap) support. Backward compati…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
【2025年】解决Burpsuite抓不到https包的问题
环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...
《C++ 模板》
目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板,就像一个模具,里面可以将不同类型的材料做成一个形状,其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式:templa…...
Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...
HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...
从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障
关键领域软件测试的"安全密码":Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力,从金融交易到交通管控,这些关乎国计民生的关键领域…...
从面试角度回答Android中ContentProvider启动原理
Android中ContentProvider原理的面试角度解析,分为已启动和未启动两种场景: 一、ContentProvider已启动的情况 1. 核心流程 触发条件:当其他组件(如Activity、Service)通过ContentR…...
