当前位置: 首页 > news >正文

MovieLife 电影生活

MovieLife 电影生活

今天看到一个很有意思的项目:https://www.lampysecurity.com/post/the-infinite-audio-book

在这里插入图片描述

“我有一个看似愚蠢的想法。通常,这类想法只是一闪而过,很少会付诸实践。但这次有所不同。假如你的生活是一部电影,它会讲述什么故事?会发生什么?我的想法就是从这里开始的。随着 AI 的兴起,我想看看是否可以让 AI 实时讲述我的生活。我们的设想是让相机拍摄一张照片,生成对照片的描述,然后由 ChatGPT 基于所看到的内容写一个叙事场景,再将文本转换为语音并播放。”

我的实现

在整个项目中,我使用了笔记本的摄像头进行操作,运行在笔记本上,感觉非常有趣。ChatGPT的描述充满了正能量!最初的代码无法运行,因此我参考了https://platform.openai.com/docs/guides/vision,进行了修改,并成功在我的电脑上运行起来。至于树莓派,我了解得不多,正在考虑是否可以在手机上部署,但还没有深入研究。

项目概念

  • 创意起源:作者反思了人生如电影的概念,探索了使用AI实时叙述他的人生。
  • 技术整合:该项目利用了OpenAI的各种服务,包括图像识别、语言模型和文字转语音。

硬件设置

  • 选择设备:一个带有Pi相机和Pi Sugar 3电池的Raspberry Pi Zero,以便携带。
  • 其他要求:
    • 带有micro HDMI的显示器,用于配置。
    • 鼠标/键盘进行交互。
    • USB micro转female A适配器。
    • SD卡用于Raspberry Pi OS。
    • 由于缺乏音频插孔,需要无线耳机。

设计和3D打印

  • 外壳设计:作者修改了现有的3D外壳设计,以适应电池,并使用Bambu Lab P1S 3D Printer。

软件和API集成

  • OpenAI API设置:
    • 创建账户并生成API密钥。
    • 解释API调用成本和使用情况。

代码实现

  • 编程语言:选择Python来编码项目。

  • 分步细节:

    • 配置文件.env

      OPENAI_API_KEY="这里填入你的API_KEY"
      
    • 导入必要的库。

      from pathlib import Path
      from openai import OpenAI
      import requests
      import os
      import cv2
      import base64
      import time
      import pygame
      from dotenv import load_dotenv# 加载 .env 文件
      load_dotenv()
      # OpenAI API key
      client = OpenAI()# OpenAI API Key
      api_key = os.getenv("OPENAI_API_KEY")
      # Path to your image
      image_path = "vision.jpg"# Getting the base64 string
      base64_image = "error"headers = {"Content-Type": "application/json","Authorization": f"Bearer {api_key}"
      }payload = {"model": "gpt-4o-mini","messages": [{"role": "user","content": [{"type": "text","text": "请描述这张图片?"},{"type": "image_url","image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}]}],"max_tokens": 300
      }
    • 从相机捕获图像。

      def capture_webcam_photo(save_directory="webcam_photos"):# Create directory if it doesn't existif not os.path.exists(save_directory):os.makedirs(save_directory)# Open default camera (usually the first camera)cap = cv2.VideoCapture(1)# Capture frame-by-frameret, frame = cap.read()# Generate a unique filenamefilename = os.path.join(save_directory, "webcam_photo.jpg")# Save the captured frame as an imagecv2.imwrite(filename, frame)# Release the capturecap.release()return filename
      
    • 将图像编码为base64格式,以便提交API。

      # Function to encode the image
      def encode_image(image_path):with open(image_path, "rb") as image_file:return base64.b64encode(image_file.read()).decode('utf-8')
      
    • 使用OpenAI的模型根据图像描述生成叙述性响应。

      def generate_response(prompt):name = "BoBo"age = "60"location = "体操之乡 湖北仙桃"response = client.chat.completions.create(model="gpt-4o-mini",messages=[{"role": "system","content": "你是一部电影的叙述者,讲述一个名叫 " + name + "。他的年龄  " + age + " ,生活在 " + location + "。当你看到一张场景图片时,你可以从" + name + "的角度描述这张照片,所有人物都用第三人称。 "},{"role": "user", "content": prompt}])return response.choices[0].message.content
      
    • 将文本响应转换为语音并播放。

      def text_to_speech(text):speech_file_path = Path(__file__).parent / "speech.mp3"response = client.audio.speech.create(model="tts-1",voice="alloy",input=text)response.stream_to_file(speech_file_path)return speech_file_pathdef play_mp3(file_path):# Initialize Pygamepygame.init()try:# Initialize the mixerpygame.mixer.init()# Load the MP3 filepygame.mixer.music.load(file_path)# Play the MP3 filepygame.mixer.music.play()# Wait until the music finishes playingwhile pygame.mixer.music.get_busy():pygame.time.Clock().tick(10)  # Adjust the playback speedexcept pygame.error as e:print(f"Error playing MP3: {e}")finally:# Cleanup Pygamepygame.mixer.music.stop()pygame.mixer.quit()pygame.quit()
      

      主函数:

      while True:start_time = time.time()saved_path = capture_webcam_photo()base64_image = encode_image(saved_path)# 将图像插入到 payload 中payload["messages"][0]["content"][1]["image_url"]["url"] = "data:image/jpeg;base64," + base64_image# 发送请求response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)# 检查响应状态if response.status_code != 200:print(f"Error: {response.status_code} - {response.text}")continue  # 跳过此次循环,继续尝试jsonZ = response.json()# 检查是否有 'choices' 键if 'choices' in jsonZ and len(jsonZ['choices']) > 0:try:response_text = generate_response(jsonZ["choices"][0]["message"]["content"])output_file = text_to_speech(response_text)  # play_mp3(output_file)  # except KeyError as e:print(f"KeyError: {e}")print("Received response:", jsonZ)continue  # 跳过此循环并记录错误else:print("No choices found in response")# 计算经过的时间elapsed_time = time.time() - start_time# 等待剩余时间remaining_time = max(0, 20 - int(elapsed_time))time.sleep(remaining_time)
      

主要功能

  • 连续运行:主循环每20秒捕获一次图像,通过OpenAI API进行处理,生成叙述,转换为语音,并播放。

完整代码

'''
@File    : movielife
@Author  : Bobo
@Blog    : https://blog.csdn.net/chinagaobo
@Note    : This code is for learning and communication purposes only
'''from pathlib import Path
from openai import OpenAI
import requests
import os
import cv2
import base64
import time
import pygame
from dotenv import load_dotenv# 加载 .env 文件
load_dotenv()
# OpenAI API key
client = OpenAI()# OpenAI API Key
api_key = os.getenv("OPENAI_API_KEY")
# Path to your image
image_path = "vision.jpg"# Getting the base64 string
base64_image = "error"headers = {"Content-Type": "application/json","Authorization": f"Bearer {api_key}"
}payload = {"model": "gpt-4o-mini","messages": [{"role": "user","content": [{"type": "text","text": "请描述这张图片?"},{"type": "image_url","image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}]}],"max_tokens": 300
}# Function to encode the image
def encode_image(image_path):with open(image_path, "rb") as image_file:return base64.b64encode(image_file.read()).decode('utf-8')def generate_response(prompt):name = "BoBo"age = "60"location = "体操之乡 湖北仙桃"response = client.chat.completions.create(model="gpt-4o-mini",messages=[{"role": "system","content": "你是一部电影的叙述者,讲述一个名叫 " + name + "。他的年龄  " + age + " ,生活在 " + location + "。当你看到一张场景图片时,你可以从" + name + "的角度描述这张照片,所有人物都用第三人称。 "},{"role": "user", "content": prompt}])return response.choices[0].message.contentdef text_to_speech(text):speech_file_path = Path(__file__).parent / "speech.mp3"response = client.audio.speech.create(model="tts-1",voice="alloy",input=text)response.stream_to_file(speech_file_path)return speech_file_pathdef capture_webcam_photo(save_directory="webcam_photos"):# Create directory if it doesn't existif not os.path.exists(save_directory):os.makedirs(save_directory)# Open default camera (usually the first camera)cap = cv2.VideoCapture(0)  # 使用内置摄像头# Capture frame-by-frameret, frame = cap.read()# Generate a unique filenamefilename = os.path.join(save_directory, "webcam_photo.jpg")# Save the captured frame as an imagecv2.imwrite(filename, frame)# Release the capturecap.release()return filenamedef play_mp3(file_path):# Initialize Pygamepygame.init()try:# Initialize the mixerpygame.mixer.init()# Load the MP3 filepygame.mixer.music.load(file_path)# Play the MP3 filepygame.mixer.music.play()# Wait until the music finishes playingwhile pygame.mixer.music.get_busy():pygame.time.Clock().tick(10)  # Adjust the playback speedexcept pygame.error as e:print(f"Error playing MP3: {e}")finally:# Cleanup Pygamepygame.mixer.music.stop()pygame.mixer.quit()pygame.quit()while True:start_time = time.time()saved_path = capture_webcam_photo()base64_image = encode_image(saved_path)# 将图像插入到 payload 中payload["messages"][0]["content"][1]["image_url"]["url"] = "data:image/jpeg;base64," + base64_image# 发送请求response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)# 检查响应状态if response.status_code != 200:print(f"Error: {response.status_code} - {response.text}")continue  # 跳过此次循环,继续尝试jsonZ = response.json()# 检查是否有 'choices' 键if 'choices' in jsonZ and len(jsonZ['choices']) > 0:try:response_text = generate_response(jsonZ["choices"][0]["message"]["content"])output_file = text_to_speech(response_text)  # play_mp3(output_file)  # except KeyError as e:print(f"KeyError: {e}")print("Received response:", jsonZ)continue  # 跳过此循环并记录错误else:print("No choices found in response")# 计算经过的时间elapsed_time = time.time() - start_time# 等待剩余时间remaining_time = max(0, 20 - int(elapsed_time))time.sleep(remaining_time)

实测案例

chatGPT的描述:在这张图片中 Bobo看到一个男子坐在桌前 面带微笑 眼镜反射出柔和的光泽 这个男人的手肘支撑在下巴旁 看起来十分放松 似乎正沉浸在与人交流的愉悦中 Bobo想这样的瞬间很难得 尤其是在压力重重的生活中 室内环境给人一种温馨舒适的感觉 整齐的墙面与那扇门形成一种和谐的背景 似乎在提醒每一个人 生活中依旧有着宁静与安详 Bobo的心情也随之变得轻松起来 彷佛可以感受到这个男子所散发出的友好气息 他觉得在这个快速发展的时代 能有这样一份从容不迫和愉快的交流 是多么美好的事情 或许这就是生活的意义所在。

测试案例

相关文章:

MovieLife 电影生活

MovieLife 电影生活 今天看到一个很有意思的项目:https://www.lampysecurity.com/post/the-infinite-audio-book “我有一个看似愚蠢的想法。通常,这类想法只是一闪而过,很少会付诸实践。但这次有所不同。假如你的生活是一部电影&#xff0c…...

网工内推 | 中级云运维工程师,双休,五险一金

01 博达人才 🔷招聘岗位:中级云运维工程师 🔷岗位职责 1、受理数据中心、云租户投诉、受理故障工单,并在时限内完成。 2、协助客户开通云产品,解答客户使用过程中的疑问。 3、处理云产品故障,协助进行故…...

Thingsboard规则链:Related Entity Data节点详解

引言 在复杂的物联网(IoT)生态系统中,数据的集成与分析是实现高效管理和智能决策的基础。Thingsboard作为一个强大的开源物联网平台,其规则链(Rule Chains)机制允许用户构建自定义的数据处理流程。其中&am…...

C++结尾

面试题 1.什么是虚函数?什么是纯虚函数 在定义函数时前面加virtual。虚函数是为了,父子类中只有一个该函数。如果在子类重写虚函数,那么用的就是子类重写的虚函数;如果子类没有重写虚函数,那么调用的是父类继承的虚函…...

Flutter鸿蒙化环境配置(windows)

Flutter鸿蒙化环境配置(windows) 参考资料Window配置Flutter的鸿蒙化环境下载配置环境变量HarmonyOS的环境变量配置配置Flutter的环境变量Flutter doctor -v 检测的问题flutter_flutter仓库地址的警告问题Fliutter doctor –v 报错[!] Android Studio (v…...

Vue入门之生命周期

文章目录 一、Vue 生命周期概述二、生命周期的四个阶段1. 创建阶段2. 挂载阶段3. 更新阶段4. 销毁阶段 三、代码案例四、总结 在 Vue 开发中,理解生命周期是非常重要的。Vue 的生命周期可以帮助我们在不同的阶段执行特定的逻辑,从而更好地控制组件的行为…...

UNI-SOP应用场景(1)- 纯前端预开发

在平时新项目开发中,前端小伙伴是否有这样的经历,hi,后端小伙伴们,系统啥时候能登录,啥时候能联调了,这是时候往往得到的回答就是,再等等,我们正在搭建系统呢,似曾相识的…...

力扣9.23

1014. 最佳观光组合 给你一个正整数数组 values&#xff0c;其中 values[i] 表示第 i 个观光景点的评分&#xff0c;并且两个景点 i 和 j 之间的 距离 为 j - i。 一对景点&#xff08;i < j&#xff09;组成的观光组合的得分为 values[i] values[j] i - j &#xff0c;…...

[Redis][事务]详细讲解

目录 0.什么是事务&#xff1f;1.Redis 事务本质2.Redis 事务意义3.事务操作1.MULTI2.EXEC3.DISCARD4.WATCH5.UNWATCH 0.什么是事务&#xff1f; Redis的事务和MySQL的事务概念上是类似的&#xff0c;都是把一系列操作绑定成一组&#xff0c;让这一组能够批量执行Redis事务和M…...

Latex——一行的划线 如何分开

代码&#xff1a; \cmidrule(r){3-4} \cmidrule(r){5-6} \cmidrule(r){7-8}效果&#xff1a; 参考文章&#xff1a; LaTeX技巧653&#xff1a;如何隔开LaTeX表格邻近\cline表格线&#xff1f;...

大数据:快速入门Scala+Flink

一、什么是Scala Scala 是一种多范式编程语言&#xff0c;它结合了面向对象编程和函数式编程的特性。Scala 这个名字是“可扩展语言”&#xff08;Scalable Language&#xff09;的缩写&#xff0c;意味着它被设计为能够适应不同规模的项目&#xff0c;从小型脚本到大型分布式…...

侧边菜单的展开和折叠

环境准备&#xff1a;Vue3Element-UI Plus <script setup> import {ref} from "vue";// 是否折叠菜单&#xff0c;默认折叠 const isCollapse ref(true)</script><template><el-container><el-aside><el-menu:collapse"isCo…...

自动化办公-Python中的for循环

for 循环是 Python 中用于迭代&#xff08;遍历&#xff09;序列&#xff08;如列表、元组、字典、集合、字符串&#xff09;或其他可迭代对象的控制结构。它允许您逐一访问序列中的每个元素&#xff0c;并对其执行操作。以下是对 for 循环的详细介绍&#xff0c;包括语法、使用…...

Python_itertools

itertools itertools.count(start, step) 返回一个无限迭代器&#xff0c;从指定的start开始&#xff0c;每次增加step。 import itertools # 从1开始&#xff0c;每次增加1&#xff0c;输出前5个数 for i in itertools.count(1, 1):if i > 5:breakprint(i)运行结果&#…...

Apache Iceberg 数据类型参考表

Apache Iceberg 概述-链接 Apache Iceberg 数据类型参考表 数据类型描述实例方法注意事项BOOLEAN布尔类型&#xff0c;表示真或假true, false用于条件判断&#xff0c;例如 WHERE is_active true。确保逻辑条件的正确性。INTEGER32位有符号整数42, -7可用于计算、聚合&#xf…...

职责链模式

职责链模式 责任链&#xff08;Chain of Responsibility&#xff09;模式&#xff1a;为了避免请求发送者与多个请求处理者耦合在一起&#xff0c;于是将所有请求的处理者通过前一对象记住其下一个对象的引用而连成一条链&#xff1b;当有请求发生时&#xff0c;可将请求沿着这…...

新品 | Teledyne FLIR IIS 推出Forge 1GigE SWIR 短波红外工业相机系列

近日&#xff0c;51camera的合作伙伴Teledyne FLIR IIS推出了新品Forge 1GigE SWIR 130万像素的红外相机。 Forge 1GigE SWIR系列的首款相机配备宽频带、高灵敏度的Sony SenSWIR™️ 130万像素IMX990 InGaAs传感器。这款先进的传感器采用5um像素捕捉可见光和SWIR光谱&#xff…...

深入MySQL:掌握索引、事务、视图、存储过程与性能优化

在掌握了MySQL的基本操作之后&#xff0c;你可能会遇到更复杂的数据管理和优化需求。本文将介绍一些MySQL的进阶特性&#xff0c;包括索引、事务、视图、存储过程和函数、以及性能优化等内容。通过学习这些高级功能&#xff0c;你可以更高效地管理和优化你的数据库。 索引 索…...

【WSL——Windows 上使用 Linux 环境】

引入 以前在windows上使用linux工具链&#xff0c;一般都要安装虚拟机&#xff08;VMware/virtualBox)。虚拟机的缺点是&#xff0c;因为是完整的虚拟环境&#xff0c;消耗系统资源比较多。 windows自己开发了WSL功能&#xff0c;实现了虚拟机的功能&#xff0c;但是比虚拟机性…...

Redis:事务

什么是Redis事务 Redis 事务的本质是一组命令的集合。事务支持一次执行多个命令&#xff0c;一个事务中所有命令都会被序列化。在事务执行过程&#xff0c;会按照顺序串行化执行队列中的命令&#xff0c;其他客户端提交的命令请求不会插入到事务执行命令序列中。 总结说&…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架&#xff0c;用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录&#xff0c;以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

云原生安全实战:API网关Kong的鉴权与限流详解

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关&#xff08;API Gateway&#xff09; API网关是微服务架构中的核心组件&#xff0c;负责统一管理所有API的流量入口。它像一座…...

python爬虫——气象数据爬取

一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用&#xff1a; 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests&#xff1a;发送 …...

es6+和css3新增的特性有哪些

一&#xff1a;ECMAScript 新特性&#xff08;ES6&#xff09; ES6 (2015) - 革命性更新 1&#xff0c;记住的方法&#xff0c;从一个方法里面用到了哪些技术 1&#xff0c;let /const块级作用域声明2&#xff0c;**默认参数**&#xff1a;函数参数可以设置默认值。3&#x…...

java高级——高阶函数、如何定义一个函数式接口类似stream流的filter

java高级——高阶函数、stream流 前情提要文章介绍一、函数伊始1.1 合格的函数1.2 有形的函数2. 函数对象2.1 函数对象——行为参数化2.2 函数对象——延迟执行 二、 函数编程语法1. 函数对象表现形式1.1 Lambda表达式1.2 方法引用&#xff08;Math::max&#xff09; 2 函数接口…...

海云安高敏捷信创白盒SCAP入选《中国网络安全细分领域产品名录》

近日&#xff0c;嘶吼安全产业研究院发布《中国网络安全细分领域产品名录》&#xff0c;海云安高敏捷信创白盒&#xff08;SCAP&#xff09;成功入选软件供应链安全领域产品名录。 在数字化转型加速的今天&#xff0c;网络安全已成为企业生存与发展的核心基石&#xff0c;为了解…...

Xcode 16 集成 cocoapods 报错

基于 Xcode 16 新建工程项目&#xff0c;集成 cocoapods 执行 pod init 报错 ### Error RuntimeError - PBXGroup attempted to initialize an object with unknown ISA PBXFileSystemSynchronizedRootGroup from attributes: {"isa">"PBXFileSystemSynchro…...

背包问题双雄:01 背包与完全背包详解(Java 实现)

一、背包问题概述 背包问题是动态规划领域的经典问题&#xff0c;其核心在于如何在有限容量的背包中选择物品&#xff0c;使得总价值最大化。根据物品选择规则的不同&#xff0c;主要分为两类&#xff1a; 01 背包&#xff1a;每件物品最多选 1 次&#xff08;选或不选&#…...