单细胞Seruat和h5ad数据格式互换(R与python)方法学习和整理
SeruatV4数据转化为h5ad格式数据
1、导入(R)
rm(list = ls())
library(Seurat)
library(qs)
library(reticulate)
library(hdf5r)
library(sceasy)
library(BiocParallel)
register(MulticoreParam(workers = 4, progressbar = TRUE))
scRNA <- qread("sc_dataset.qs")
scRNA
# An object of class Seurat
# 30269 features across 44651 samples within 2 assays
# Active assay: integrated (2000 features, 2000 variable features)
# 1 other assay present: RNA
# 3 dimensional reductions calculated: pca, umap, tsne
2、配置python环境(终端/linux)
# 配置环境
conda create -n sceasy python=3.9
conda activate sceasy
conda install loompy# 可选安装
conda install anndata
conda install scipy
3、开始转换(R)
# 在R语言中加载python环境
use_condaenv('sceasy')
loompy <- reticulate::import('loompy')# Seurat to AnnData
sceasy::convertFormat(scRNA, from="seurat", to="anndata",outFile='scRNA.h5ad')
# AnnData object with n_obs × n_vars = 44651 × 28269
# obs: 'orig.ident', 'nCount_RNA', 'nFeature_RNA', 'GSE_num', 'Gender', 'Age', 'subsite', 'hpv', 'percent.mt', 'percent.rp', 'percent.hb', 'RNA_snn_res.0.1', 'RNA_snn_res.0.2', 'RNA_snn_res.0.3', 'RNA_snn_res.0.4', 'RNA_snn_res.0.5', 'RNA_snn_res.0.6', 'RNA_snn_res.0.7', 'RNA_snn_res.0.8', 'RNA_snn_res.0.9', 'RNA_snn_res.1', 'RNA_snn_res.1.1', 'RNA_snn_res.1.2', 'RNA_snn_res.1.3', 'RNA_snn_res.1.4', 'RNA_snn_res.1.5', 'RNA_snn_res.1.6', 'RNA_snn_res.1.7', 'RNA_snn_res.1.8', 'RNA_snn_res.1.9', 'RNA_snn_res.2', 'seurat_clusters', 'celltype', 'integrated_snn_res.0.1', 'integrated_snn_res.0.2', 'integrated_snn_res.0.3', 'integrated_snn_res.0.4', 'integrated_snn_res.0.5', 'integrated_snn_res.0.6', 'integrated_snn_res.0.7', 'integrated_snn_res.0.8', 'integrated_snn_res.0.9', 'integrated_snn_res.1', 'integrated_snn_res.1.1', 'integrated_snn_res.1.2', 'integrated_snn_res.1.3', 'integrated_snn_res.1.4', 'integrated_snn_res.1.5', 'integrated_snn_res.1.6', 'integrated_snn_res.1.7', 'integrated_snn_res.1.8', 'integrated_snn_res.1.9', 'integrated_snn_res.2'
# var: 'name'
# obsm: 'X_pca', 'X_umap', 'X_tsne'#Seurat to SingleCellExperiment
sceasy::convertFormat(scRNA, from="seurat", to="sce",outFile='scRNA.rds')
4、IDE中确认一下(python)
# 加载库
import scanpy as sc
import os# 确认路径
os.getcwd()# 读取数据
adata = sc.read_h5ad('scRNA.h5ad')
adata
# AnnData object with n_obs × n_vars = 44651 × 28269
# obs: 'orig.ident', 'nCount_RNA', 'nFeature_RNA', 'GSE_num', 'Gender', 'Age', 'subsite', 'hpv', 'percent.mt', 'percent.rp', 'percent.hb', 'RNA_snn_res.0.1', 'RNA_snn_res.0.2', 'RNA_snn_res.0.3', 'RNA_snn_res.0.4', 'RNA_snn_res.0.5', 'RNA_snn_res.0.6', 'RNA_snn_res.0.7', 'RNA_snn_res.0.8', 'RNA_snn_res.0.9', 'RNA_snn_res.1', 'RNA_snn_res.1.1', 'RNA_snn_res.1.2', 'RNA_snn_res.1.3', 'RNA_snn_res.1.4', 'RNA_snn_res.1.5', 'RNA_snn_res.1.6', 'RNA_snn_res.1.7', 'RNA_snn_res.1.8', 'RNA_snn_res.1.9', 'RNA_snn_res.2', 'seurat_clusters', 'celltype', 'integrated_snn_res.0.1', 'integrated_snn_res.0.2', 'integrated_snn_res.0.3', 'integrated_snn_res.0.4', 'integrated_snn_res.0.5', 'integrated_snn_res.0.6', 'integrated_snn_res.0.7', 'integrated_snn_res.0.8', 'integrated_snn_res.0.9', 'integrated_snn_res.1', 'integrated_snn_res.1.1', 'integrated_snn_res.1.2', 'integrated_snn_res.1.3', 'integrated_snn_res.1.4', 'integrated_snn_res.1.5', 'integrated_snn_res.1.6', 'integrated_snn_res.1.7', 'integrated_snn_res.1.8', 'integrated_snn_res.1.9', 'integrated_snn_res.2'
# var: 'name'
# obsm: 'X_pca', 'X_tsne', 'X_umap'
SeruatV5数据转化为h5ad格式数据
1、导入(R)
rm(list = ls())
V5_path = "/Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/seurat5/"
.libPaths(V5_path)
.libPaths()
library(Seurat)
library(qs)
library(reticulate)
library(hdf5r)
library(sceasy)
library(BiocParallel)
register(MulticoreParam(workers = 4, progressbar = TRUE))
scRNA_V5 <- readRDS("scRNA_tumor.rds")
scRNA_V5
# An object of class Seurat
# 20124 features across 5042 samples within 1 assay
# Active assay: RNA (20124 features, 2000 variable features)
# 3 layers present: counts, data, scale.data
# 3 dimensional reductions calculated: pca, harmony, umap
2、配置python环境(终端/linux)
# 配置环境
conda create -n sceasy python=3.9
conda activate sceasy
conda install loompy# 可选安装
conda install anndata
conda install scipy
3、R语言转换(R)
# 在R语言中加载python环境
use_condaenv('sceasy')
loompy <- reticulate::import('loompy')# Seurat to AnnData
scRNA_V5[["RNA"]] <- as(scRNA_V5[["RNA"]], "Assay")
sceasy::convertFormat(scRNA_V5, from="seurat", to="anndata",outFile='scRNA_V5.h5ad')
# AnnData object with n_obs × n_vars = 5042 × 20124
# obs: 'nCount_RNA', 'nFeature_RNA', 'Sample', 'Cell.Barcode', 'Type', 'RNA_snn_res.0.1', 'RNA_snn_res.0.2', 'RNA_snn_res.0.3', 'RNA_snn_res.0.4', 'RNA_snn_res.0.5', 'RNA_snn_res.0.6', 'RNA_snn_res.0.7', 'RNA_snn_res.0.8', 'RNA_snn_res.0.9', 'RNA_snn_res.1', 'RNA_snn_res.1.1', 'RNA_snn_res.1.2', 'seurat_clusters', 'celltype', 'seurat_annotation'
# var: 'vf_vst_counts_mean', 'vf_vst_counts_variance', 'vf_vst_counts_variance.expected', 'vf_vst_counts_variance.standardized', 'vf_vst_counts_variable', 'vf_vst_counts_rank', 'var.features', 'var.features.rank'
# obsm: 'X_pca', 'X_harmony', 'X_umap'
# Warning message:
# In .regularise_df(obj@meta.data, drop_single_values = drop_single_values) :
# Dropping single category variables:orig.ident
先将 Seurat V5 对象中的 Assay5 类型转换为 Seurat 旧版本中的 Assay 类型,然后再进行转化
4、IDE中确认一下(python)
# 加载库
import scanpy as sc
import os# 确认路径
os.getcwd()# 读取数据
adata = sc.read_h5ad('scRNA.h5ad')
adata
# AnnData object with n_obs × n_vars = 5042 × 20124
# obs: 'nCount_RNA', 'nFeature_RNA', 'Sample', 'Cell.Barcode', 'Type', 'RNA_snn_res.0.1', 'RNA_snn_res.0.2', 'RNA_snn_res.0.3', 'RNA_snn_res.0.4', 'RNA_snn_res.0.5', 'RNA_snn_res.0.6', 'RNA_snn_res.0.7', 'RNA_snn_res.0.8', 'RNA_snn_res.0.9', 'RNA_snn_res.1', 'RNA_snn_res.1.1', 'RNA_snn_res.1.2', 'seurat_clusters', 'celltype', 'seurat_annotation'
# var: 'vf_vst_counts_mean', 'vf_vst_counts_variance', 'vf_vst_counts_variance.expected', 'vf_vst_counts_variance.standardized', 'vf_vst_counts_variable', 'vf_vst_counts_rank', 'var.features', 'var.features.rank'
# obsm: 'X_harmony', 'X_pca', 'X_umap'
ha5d格式数据转化成seruat对象
1.导入
rm(list = ls())
library(sceasy)
library(reticulate)
library(Seurat)
library(BiocParallel)
register(MulticoreParam(workers = 4, progressbar = TRUE))
2、R语言转换
# h5ad转为Seurat
sceasy::convertFormat(obj = "scRNA.h5ad", from="anndata",to="seurat",outFile = 'scRNA.rds')
# X -> counts
# An object of class Seurat
# 28269 features across 44651 samples within 1 assay
# Active assay: RNA (28269 features, 0 variable features)
# 2 layers present: counts, data
# 3 dimensional reductions calculated: pca, tsne, umap
这种方法得到的数据是SeruatV4版本的,所以如果要用于SeruatV5的话还需要再转化一下。
还有细胞数很多的话sceasy就不好用了,这个时候可以用dior包。
参考资料:
-
sceasy: https://github.com/cellgeni/sceasy
-
dior: https://github.com/JiekaiLab/dior
-
单细胞天地: https://mp.weixin.qq.com/s/qHBeQnYJdK0ATGlTOROPeA
-
生信菜鸟团: https://mp.weixin.qq.com/s/8fwJSc9Dnp8h_Suv76oXVA
-
KS科研分享与服务:https://mp.weixin.qq.com/s/Wt9TU5Qk3yqPDlRlXr6BfQ
注:若对内容有疑惑或者有发现明确错误的朋友,请联系后台(欢迎交流)。更多内容可关注公众号:生信方舟
- END -
相关文章:
单细胞Seruat和h5ad数据格式互换(R与python)方法学习和整理
SeruatV4数据转化为h5ad格式数据 1、导入(R) rm(list ls()) library(Seurat) library(qs) library(reticulate) library(hdf5r) library(sceasy) library(BiocParallel) register(MulticoreParam(workers 4, progressbar TRUE)) scRNA <- qread("sc_dataset.qs&q…...
分布式难题-三座大山NPC
文章目录 1. 三座大山 NPC 的概念2. NPC 细分理解2.1. Network Delay 网络延迟2.2. Process Pause 进程暂停2.3. Clock Drift 时钟漂移Is the Algorithm Asynchronous? 本文参考: RedLock红锁安全性争论(上) https://martin.kleppmann.com/…...
两个方法教你设置Excel密码,防止修改和复制Excel表格内容
EXCEL是一款功能强大的电子表格软件,广泛用于各个地方。然而,对于一些重要的表格文件需要通过设置密码来限制大就的修改和复制权限。因而,对于一个EXCEL表格,通过密码设置大家有访问表格的权限,但无法修改数据的权限。…...
Java解析Excel文件
目录 背景 技术选型 开源Java框架选型 1. Apache POI 2. EasyExcel 收费Java框架选型 1. Spire.XLS for java 2. Aspose 总结 背景 在低代码产品的研发过程中,为用户提供数据导入导出的能力时,无法避免的就是对EXCEL解析的能力,所以本篇通过介…...
Require:基于雪花算法完成一个局部随机,全局离散没有热点切唯一的数值Id生成器。
【雪花算法】雪花算法(Snowflake Algorithm)是Twitter开源的用于生成唯一ID的算法,它可以在分布式系统中生成唯一的64位长整数ID。这种ID生成方式既保证了趋势递增,又保证了在不同数据中心、不同机器上生成的ID的唯一性。 符号位&…...
libevent - Macro function
TAILQ_INIT /** Tail queue functions.* 尾队列的头结点初始化为空队列。*/ #define TAILQ_INIT(head) do { \(head)->tqh_first NULL; \(head)->tqh_last &(head)->tqh_first; \ } while (/*CONSTCOND*/0)TAILQ_INIT 宏是一个用于初始化尾队列头部…...
408算法题leetcode--第17天
101. 对称二叉树 101. 对称二叉树思路:递归,对称即两个子树的左边和右边分别一样;一个子树是左中右遍历,另一个是右中左遍历;写的时候可以分三步,确定函数参数以及返回类型,确定终止条件&#…...
机器人顶刊IEEE T-RO发布无人机动态环境高效表征成果:基于粒子的动态环境连续占有地图
摘要:本研究有效提高了动态环境中障碍物建模的精度和效率。NOKOV度量动作捕捉系统助力评估动态占用地图在速度估计方面的性能。 近日,上海交通大学、荷兰代尔夫特理工研究团队在机器人顶刊IEEE T-RO上发表题为Continuous Occupancy Mapping in Dynamic …...
spring-boot web + vue
依赖的软件 maven 1. 官网下载zip 文件,比如apache-maven-3.9.9-bin.zip 2. 解压到某个盘符,必须保证父亲目录的名字包含英文,数字,破折号(-) 3. 设置环境变量M2_HOME, 并将%M2_HOME%\bin添加到windown…...
HDFS分布式文件系统01-HDFS架构与SHELL操作
HDFS分布式文件系统 学习目标第一课时知识点1-文件系统的分类单机文件系统网络文件系统分布式文件系统 知识点2-HDFS架构知识点3-HDFS的特点知识点4-HDFS的文件读写流程知识点5-HDFS的健壮性 第二课时知识点1-HDFS的Shell介绍HDFS Shell的语法格式如下。HDFS Shell客户端命令中…...
Go语言流程控制
Go语言流程控制 1.IF-ELSE2.Switch-Caseswitch 语句Type Switch 3.select 语句4.循环语句 1.IF-ELSE Go 编程语言中 if 语句的语法如下: if 布尔表达式 {/* 在布尔表达式为 true 时执行 */ }例如: package mainimport "fmt"func main() {va…...
无人机在救灾方面的应用!
一、灾害监测与评估 实时监测与评估:无人机可以快速到达灾害现场,通过搭载的高清摄像头、红外热成像仪等设备,对灾区进行实时监测和灾情评估。根据捕捉到的受灾范围、火势大小、建筑物损坏情况等关键信息,为救援行动提供决策依据…...
面试知识点总结篇一
一、C语言和C有什么区别 C语言是面向过程,强调用函数将问题分解为多个子任务,按顺序逐步进行。数据和操作分开C则是面向对象,面向对象是一种基于对象和类的编程范式,关注如何利用对象来抽象和模拟现实世界的实体。因此引入了类&a…...
【计算机网络 - 基础问题】每日 3 题(二十五)
✍个人博客:Pandaconda-CSDN博客 📣专栏地址:http://t.csdnimg.cn/fYaBd 📚专栏简介:在这个专栏中,我将会分享 C 面试中常见的面试题给大家~ ❤️如果有收获的话,欢迎点赞👍收藏&…...
【第十八章:Sentosa_DSML社区版-机器学习之协同过滤】
【第十八章:Sentosa_DSML社区版-机器学习之协同过滤】 1.算子介绍 协同过滤是推荐系统中常用的一种方法。该算法旨在填补用户-产品关联矩阵中缺少的项。在算法中,用户和产品都是通过一组少量的潜在因素描述,这些潜在因素可以用于预测用户-产…...
TDOA方法求二维坐标的MATLAB代码演示与讲解
引言 时间差定位(Time Difference of Arrival, TDOA)是一种用于确定信号源位置的技术,广泛应用于无线通信、声学定位等领域。通过测量信号到达多个接收器的时间差,可以计算出信号源的二维坐标。本文将通过MATLAB代码演示如何使用TDOA方法来求解二维坐标。 TDOA原理 TDOA…...
基于微信的原创音乐小程序的设计与实现+ssm论文源码调试讲解
第二章 开发工具及关键技术介绍 2.1 JAVA技术 Java主要采用CORBA技术和安全模型,可以在互联网应用的数据保护。它还提供了对EJB(Enterrise JavaBeans)的全面支持,java servlet AI,JS(java server ages&…...
基于大数据技术的颈椎病预防交流与数据分析及可视化系统
作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码 精品专栏:Java精选实战项目…...
Spring MVC中实现一个文件上传和下载功能
说到文件上传和下载,相信每个开发者都有或多或少的接触过文件上传的功能吧,文件上传和下载是我们在学习计算机网络应用常见的一个功能,主要涉及到用户和服务器之间的数据传输。 我们来对文件上传和下载功能的进行相关概述吧! 文…...
Webpack 介绍
Webpack 介绍 Date: August 29, 2024 全文概要 Webpack概念: Webpack是一个静态的模块化的打包工具,可以为现代的 JavaSript 应用程序进行打包。 1-静态:Webpack可以将代码打包成最终的静态资源 2-模块化:webpack支持各种模块…...
使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...
51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
k8s业务程序联调工具-KtConnect
概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖
在Vuzix M400 AR智能眼镜的助力下,卢森堡罗伯特舒曼医院(the Robert Schuman Hospitals, HRS)凭借在无菌制剂生产流程中引入增强现实技术(AR)创新项目,荣获了2024年6月7日由卢森堡医院药剂师协会࿰…...
MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...
GitHub 趋势日报 (2025年06月06日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...
