人工智能概览
目录
什么是人工智能
人工智能的历史与发展
人工智能发展时间轴示意图:
人工智能的主要分支
机器学习与深度学习在AI中的地位
什么是人工智能
人工智能(Artificial Intelligence, AI)是指由人制造出来的具有一定智能的系统,能够理解复杂的概念、学习新事物、适应环境变化并基于数据做出决策或预测。旨在模拟人类智能行为和思维方式,使机器具备感知、推理、学习、规划、交流等能力。AI 的应用范围广泛,从简单的自动化任务到复杂的数据分析、自然语言处理、图像识别等领域均有涉及。
人工智能的历史与发展
| 年份 | 事件 | 描述 |
|---|---|---|
| 1943 | 麦卡洛克-皮茨模型 | Warren McCulloch 和 Walter Pitts 提出了第一个神经网络模型,为后来的人工智能研究奠定了理论基础。 |
| 1950 | 图灵测试 | Alan Turing 提出了著名的“图灵测试”,用以判断机器是否具有人类智能的标准。 |
| 1956 | 达特茅斯会议 | John McCarthy 组织了达特茅斯会议,并首次提出了“Artificial Intelligence”这一术语,标志着AI作为一门学科的正式诞生。 |
| 1960 | 早期专家系统 | 开发了DENDRAL和MYCIN等早期专家系统,能够解决特定领域的问题。 |
| 1970 | AI冬天 | 由于技术瓶颈以及对AI期望值过高导致失望情绪蔓延,资金投入减少,AI进入了一个相对停滞期。 |
| 1980 | 知识工程与第五代计算机项目 | 日本启动了雄心勃勃的第五代计算机计划,试图通过并行计算来实现高级语言处理等功能;同时知识工程开始兴起。 |
| 1990 | 数据挖掘与互联网 | 随着万维网的普及,大量数据变得可访问,促进了数据挖掘技术和算法的发展。 |
| 2000 | 深度学习初现 | 多层感知器(MLP)等深度学习架构被重新审视,并在语音识别等领域取得了初步成果。 |
| 2010 | 深度学习爆发 | AlexNet 在ImageNet挑战赛中取得突破性成绩,引发了深度学习在全球范围内的广泛兴趣与应用。 |
| 2010至今 | AI广泛应用 | 从自动驾驶汽车到智能家居设备,AI技术正在越来越多地融入我们的日常生活中。 |
- 萌芽期:早在20世纪40年代末至50年代初,随着计算机科学的发展,人们开始探索如何让机器像人一样思考。1956年达特茅斯会议标志着AI作为一门学科正式诞生。
- 早期探索:60-70年代是AI研究初期阶段,期间出现了许多理论模型与算法,如逻辑推理机、专家系统等。但受限于当时计算能力和可用数据量较少,这些尝试大多停留在实验室内。
- 寒冬与复苏:进入80年代后,由于技术瓶颈以及对AI期望值过高导致失望情绪蔓延,“AI冬天”到来。直到90年代中期以后,互联网兴起带来了海量信息资源,同时硬件性能大幅提升,为AI再次崛起创造了条件。
- 快速发展:21世纪以来,特别是近年来,得益于大数据、云计算等基础设施建设不断完善,AI迎来爆发式增长。深度学习技术取得突破性进展,推动了语音识别、自动驾驶等多个领域向前迈进一大步。
人工智能发展时间轴示意图:
-------------------------------------> 时间
1943 1950 1956 1960s 1970s 1980 1990 2000 2010 至今
| | | | | | | | | |
麦卡洛克-皮茨模型 图灵测试 达特茅斯会议 早期专家系统 AI冬天 知识工程/第五代计算机 数据挖掘/互联网 深度学习初现 深度学习爆发 AI广泛应用
人工智能的主要分支
根据功能特点不同,可以将AI大致分为以下几个方向:
- 感知智能:通过传感器收集外界信息,并对其进行初步理解和解释的能力。典型应用包括图像识别、声音处理等。
- 认知智能:更高级别的思维活动,涉及记忆、理解、判断等方面。例如自然语言理解、知识表示与推理等。
- 创造智能:指机器能够生成新颖内容或解决方案的能力。艺术创作、游戏设计等领域正在探索这一可能性。
- 社会智能:使机器人能够在多人环境中有效互动沟通的技术。社交机器人、虚拟助手等产品体现了这方面的发展趋势。
机器学习与深度学习在AI中的地位
- 机器学习是实现人工智能的一种重要方法论,其核心思想是从大量历史数据中自动“学习”规律,并据此对未来情况进行预测或分类。按照是否需要人工标注训练样本可分为监督学习、无监督学习及半监督学习;按解决问题类型又可细分为回归问题、分类问题等。
- 深度学习则是机器学习的一个子集,特别强调使用多层神经网络结构来模拟大脑工作原理,以完成更加复杂的模式识别任务。相较于传统浅层模型,深度网络具有更强的数据表达能力,在视觉、听觉等领域取得了显著成效。此外,随着计算资源日益丰富及优化算法不断进步,深度学习已经成为当前最炙手可热的研究热点之一。
相关文章:
人工智能概览
目录 什么是人工智能 人工智能的历史与发展 人工智能发展时间轴示意图: 人工智能的主要分支 机器学习与深度学习在AI中的地位 什么是人工智能 人工智能(Artificial Intelligence, AI)是指由人制造出来的具有一定智能的系统,能够理…...
[vulnhub] Prime 1
https://www.vulnhub.com/entry/prime-1,358/ 主机发现端口扫描 探测存活主机,137是靶机 nmap -sP 192.168.75.0/24 // Starting Nmap 7.93 ( https://nmap.org ) at 2024-09-22 16:25 CST Nmap scan report for 192.168.75.1 Host is up (…...
JavaSE——lombok、juint单元测试、断言
一、lombok的使用 默认jvm不解析第三方注解,需要手动开启 链式调用 二、juint单元测试 下载juint包 public class TestDemo {// 在每一个单元测试方法执行之前执行Beforepublic void before() {// 例如可以在before部分创建IO流System.out.println("befor…...
商标价值如何评估与增值?
商标是企业的标志,代表着企业的产品或服务质量、信誉和形象。一个具有高知名度和美誉度的商标,能够为企业带来巨大的商业价值。它不仅可以帮助企业在市场中脱颖而出,吸引消费者的关注和购买,还可以作为企业的重要资产进行融资、并…...
linux命令之firewall-cmd用法
firewall-cmd Linux上新用的防火墙软件,跟iptables差不多的工具 补充说明 firewall-cmd 是 firewalld的字符界面管理工具,firewalld是centos7的一大特性,最大的好处有两个:支持动态更新,不用重启服务;第…...
深入浅出CSS盒子模型
“批判他人总是想的太简单 剖析自己总是想的太困难” 文章目录 前言文章有误敬请斧正 不胜感恩!什么是盒子模型?盒子模型的组成部分详解1. 内容区(Content)2. 内边距(Padding)3. 边框(Border&am…...
字符编码发展史4 — Unicode与UTF-8
上一篇《字符编码发展史3 — GB2312/Big5/GBK/GB18030》我们讲解了ANSI编码中的GB2312/Big5/GBK/GB18030。本篇我们将继续讲解字符编码的第三个发展阶段中的Unicode与UTF-8。 2.3. 第三个阶段 国际化 前面提到的第二个阶段,各个国家和地区各自为政,纷纷…...
【flink】之如何消费kafka数据并读写入redis?
背景: 最近公司出现做了一个新需求,需求内容是加工一个营销时机,但是加工营销时机的同时需要把数据内容里的一个idmapping存入redis用于后续的读写。 准备: <!-- 依赖 --><dependency><groupId>org.apache.fl…...
搜索引擎onesearch3实现解释和升级到Elasticsearch v8系列(二)-索引
场景 首先介绍测试的场景,本系列schema定义 pdm文档索引,包括nested,作为文档扩展属性字段,_content字段是组件保留字段,支持文本内容,字段属性还有其他属性,如boost,getter&#x…...
离散化算法
离散化 在C中,离散化通常指的是将连续的数值或数据转化为离散的形式。这在数值分析、信号处理、图像处理和机器学习等领域都非常常见。以下是一些离散化的基本概念和方法: 1.区间划分: 将连续变量的值域分成多个区间,每个区间对…...
基于ollama的本地RAG实践
先放参考的原文链接大语言模型实战——搭建纯本地迷你版RAG_本地rag-CSDN博客 一、大模型选择 在我之前的文章中有讲到,我用的是ollama中的llama3.1 Ollama在Windows安装,使用,简单调用API_ollama如何对外提供api-CSDN博客 二、嵌入模型 …...
安卓开发板_MTK开发板_联发科开发评估套件Demo板接口介绍
开发板是一种功能丰富的电路平台,专为开发人员设计,集成了多种传感器、扩展接口和通信模块。这使得开发者能够高效进行原型设计和功能验证,极大地简化了软硬件开发的过程。 此次介绍的安卓开发板由MT8788核心板与底板构成,特别之处…...
代码随想录冲冲冲 Day58 图论Part9
47. 参加科学大会(第六期模拟笔试) 根据昨天的dijkstra进行堆优化 使用的原因是点多但边少 所以直接对于边进行操作 1.对于priority_queue来说 这是最小堆, 小于的话就是最大堆 之后由于是根据边来说的 所以新建一个Edge并且初始化一下 之后由于使用…...
UnityHub下载任意版本的Unity包
1)先打开 // 也可以采用2直接打开 2)也可以直接打开 下载存档 (unity.com) 3)关联起来UnityHub即可...
网站服务器怎么计算同时在线人数?
网站服务器计算同时在线人数通常涉及跟踪和记录当前活跃会话的数量。以下是几种常用的方法来估算或计算网站的同时在线人数: 1. 会话跟踪 - 基于会话(Session):服务器可以为每个访问者创建一个会话,并跟踪这些会话。当访问者首次访问网站时&a…...
[spring]MyBatis介绍 及 用MyBatis注解操作简单数据库
文章目录 一. 什么是MyBatis二. MyBatis操作数据库步骤(使用注解)创建工程创建数据库创建对应实体类配置数据库连接字符串写持久层代码单元测试 三. MyBatis基础操作 使用注解打印日志参数传递增删改查 一. 什么是MyBatis 简单来说 MyBatis 是更简单完成程序和数据库交互的框架…...
Ks渲染做汽车动画吗?汽车本地渲染与云渲染成本分析
Keyshot是一款强大的实时光线追踪和全域光渲染软件,它确实可以用于制作汽车动画,包括汽车模型的渲染和动画展示。Keyshot的动画功能允许用户创建相机移动、物体变化等动态效果,非常适合用于汽车动画的制作。 至于汽车动画的渲染成本ÿ…...
AI智能时代:哪款编程工具让你的工作效率翻倍?
引言 在日益繁忙的工作环境中,选择合适的编程工具已成为提升开发者工作效率的关键。不同的工具能够帮助我们简化代码编写、自动化任务、提升调试速度,甚至让团队协作更加顺畅。那么,哪款编程工具让你的工作效率翻倍?是智能的代码编…...
这五本大模型书籍,让你从大模型零基础到精通,非常详细收藏我这一篇就够了
大模型(Large Language Models, LLMs)是近年来人工智能领域的一大热点,它们在自然语言处理、对话系统、内容生成等多个方面展现出了强大的能力。随着技术的发展,市面上出现了许多介绍大模型理论与实践的书籍,为研究人员…...
面试经典150题 堆
215.数组中的第K个最大元素 建堆算法实现-CSDN博客 215. 数组中的第K个最大元素 中等 给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。 请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。 你必…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案
在移动互联网营销竞争白热化的当下,推客小程序系统凭借其裂变传播、精准营销等特性,成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径,助力开发者打造具有市场竞争力的营销工具。 一、系统核心功能架构&…...
【SpringBoot自动化部署】
SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一,能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时,需要添加Git仓库地址和凭证,设置构建触发器(如GitHub…...
十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建
【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...
车载诊断架构 --- ZEVonUDS(J1979-3)简介第一篇
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 做到欲望极简,了解自己的真实欲望,不受外在潮流的影响,不盲从,不跟风。把自己的精力全部用在自己。一是去掉多余,凡事找规律,基础是诚信;二是…...
