当前位置: 首页 > news >正文

【2024.9.28练习】青蛙的约会

题目描述


题目分析

        由于两只青蛙都在跳跃导致变量多,不妨采用物理题中的相对运动思想,设青蛙A不动,青蛙B每次跳n-m米,两只青蛙的距离为x-y米。正常来说,只要模拟青蛙B与青蛙A的相对运动过程,最终当青蛙B与青蛙A距离为0时即可求得总跳跃次数。但是难点在于数据量大,按部就班的模拟将会超时。

        由于这是一道有关整数和环的数学题,考虑使用扩展欧几里得算法求解。现直接假设一只青蛙静止,另一只青蛙每次位移为a=n-m,总跳跃次数为X,一圈长度为b=L,跳跃的圈数为Y,青蛙间的距离为c=x-y。则题目满足方程:aX+bY=c。显然要使方程有整数解,必须满足的条件是:c必须是 a 和 b 的最大公约数的倍数,即ax\equiv c(mod\ b)。这可以通过贝祖定理证明。

        接下来的难点是求出最小跳跃次数。根据拓展欧几里得算法已经得到了方程的一组特解,但这不一定是最优解,根据线性同余方程的通解公式:

x=x_0+k\frac{b}{d}\mid k\in \mathbb{Z},d=gcd(a,b)

只需让该特解模除\frac{b}{d}即可求出跳跃次数在(0,\frac{b}{d}]间的最小正整数解。

        提交后有一处测试点有误,经检查,原来在exgcd算法中,如果两个参数存在负数,输出的最大公因数gcd(a,b)也可能是负数。这并不影响所得特解的正确性,但在求最小正解的时候,需要采取措施让取模后的结果转变为正数。


我的代码

#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;// 扩展欧几里得算法
ll extgcd(ll a, ll b, ll& x, ll& y) {if (b == 0) {x = 1;y = 0;return a;}ll d = extgcd(b, a % b, y, x);y -= (a / b) * x;return d;
}int main() {ll x, y, m, n, L;cin >> x >> y >> m >> n >> L;ll a = n - m;  // 移项后得到 a = n - mll b = x - y;  // 常数项 b = x - yll l = L;      // 模数为 Lll x0, y0;ll d = extgcd(a, l, x0, y0);  // 使用扩展欧几里得求解if (b % d != 0) {cout << "Impossible" << endl;}else {// 存在解的情况,求最小非负整数解ll k = (x0 * (b / d)) % (l / d); //其中x0*(b/d)为一个方程的特解if (k < 0) {if (l / d > 0) {k += l / d;  // 保证 k 为非负}else {k -= l / d;  // 保证 k 为非负}}cout << k << endl;}return 0;
}

由于扩展欧几里得算法参数使用了引用,导致逻辑相对更难理解,我利用原本欧几里得算法的数学递推逻辑修改为一下函数,程序可以成功运行:

ll x_0;
ll y_0;
ll x_1;
ll y_1;
ll extgcd(ll a, ll b) {ll d = a;if (b != 0) {d = extgcd(b, a % b);x_0 = y_1;y_0 = x_1 - a / b * y_1;y_1 = y_0;x_1 = x_0;}else {x_1 = 1;y_1 = 0;}return d;
}

相关文章:

【2024.9.28练习】青蛙的约会

题目描述 题目分析 由于两只青蛙都在跳跃导致变量多&#xff0c;不妨采用物理题中的相对运动思想&#xff0c;设青蛙A不动&#xff0c;青蛙B每次跳米&#xff0c;两只青蛙的距离为米。正常来说&#xff0c;只要模拟青蛙B与青蛙A的相对运动过程&#xff0c;最终当青蛙B与青蛙A距…...

Python入门:类的异步资源管理与回收( __del__ 方法中如何调用异步函数)

文章目录 📖 介绍 📖🏡 演示环境 🏡📒 文章内容 📒📝 使用上下文管理器📝 使用 `__del__` 方法📝 结合使用上下文管理器与 `__del__`📝 资源回收的重要性⚓️ 相关链接 ⚓️📖 介绍 📖 在编程中,资源的管理和回收至关重要,尤其是在处理网络请求时。频…...

Android开发中的ViewModel

在Android应用开发中&#xff0c;ViewModel作为架构组件之一&#xff0c;扮演着管理UI数据和生命周期的关键角色。本文将深入探讨ViewModel如何感知View的生命周期&#xff0c;并分析其内核原理&#xff0c;帮助开发者更好地利用ViewModel优化应用架构。 一、ViewModel简介 在…...

Vue 3 文件编译流程详解与 Babel 的使用

文章目录 一、背景二、结论三、vitejs/plugin-vue 插件调试前物料准备vuePlugin 入口buildStart 方法transform 方法 四、vue/compiler-sfc 核心包parse 方法compileScript、rewriteDefault 方法compileTemplate 方法 五、整体架构六、总结参考资料 一、背景 最近正在研究 rea…...

Android常用C++特性之std::chrono

声明&#xff1a;本文内容生成自ChatGPT&#xff0c;目的是为方便大家了解学习作为引用到作者的其他文章中。 std::chrono 是 C11 引入的标准库中的时间处理工具&#xff0c;提供了以多种精度进行时间测量、处理和操作的功能。它允许开发者处理时间点&#xff08;time_point&am…...

[Oracle] ORA-04036: 实例使用的 PGA 内存超出 PGA_AGGREGATE_LIMIT

有说该问题是因为触发了Oracle的BUG导致&#xff0c;最直接的解决方法就是重启数据库实例&#xff1b; Linux下数据库实例重启...

一次 Spring 扫描 @Component 注解修饰的类坑

问题现象 之前遇到过一个问题&#xff0c;在一个微服务的目录下有相同功能 jar 包的两个不同的版本&#xff0c;其中一个版本里面的类有 Component 注解&#xff0c;另外一个版本的类里面没有 Component 注解&#xff0c;且按照加载的顺序&#xff0c;没有 Component 注解的 j…...

深度学习:调整学习率

目录 前言 一、什么是调整学习率&#xff1f; 二、调整学习率的作用 三、怎么调整学习率 1.有序调整 2.自适应调整 3.自定义调整 4.调整示例 前言 在深度学习中&#xff0c;调整学习率是非常重要的&#xff0c;它对模型的训练效果和收敛速度有显著影响。 一、什么是调整…...

Java项目实战II基于Java+Spring Boot+MySQL的厨艺交流平台设计与实现(源码+数据库+文档)

目录 一、前言 二、技术介绍 三、系统实现 四、文档参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发&#xff0c;CSDN平台Java领域新星创作者&#xff0c;专注于大学生项目实战开发、讲解和毕业答疑辅导。获取源码联系方式请查看文末 一、前言 在美食文化…...

第二十节:学习Redis缓存数据库实现增删改查(自学Spring boot 3.x的第五天)

这节记录下如何使用redis缓存数据库。 第一步&#xff1a; 先在服务器端安装redis&#xff0c; 下载地址&#xff1a;Releases tporadowski/redis GitHub。 第二步&#xff1a; 安装redis客户端可视化管理软件redisDesktopmanager Redis Desktop Manager - Download 第…...

Android SQLite的基本使用、生成Excel文件保存到本地

1. Android SQLite的基本使用 1.1. SQLiteOpenHelper Android 底层已经通过一个SQLiteOpenHelper的抽象类将数据库的创建&#xff0c;以及修改&#xff0c;更新等都放在了里面。 要使用它必须实现它的OnCreate(SQLiteDatabase db)&#xff0c;onUpgrade(SQLiteDatabase db, int…...

记一次因视频编码无法在浏览器播放、编码视频报错问题

起因 ... f cv2.VideoWriter_fourcc(*h264) ...我这边使用h264编码会提示 OpenCV: FFMPEG: tag 0x34363268/h264 is not supported with codec id 27 and format mp4 / MP4 (MPEG-4 Part 14) OpenCV: FFMPEG: fallback to use tag 0x31637661/avc1 [ERROR:02.711] global /i…...

【深度学习】深度卷积神经网络(AlexNet)

在 LeNet 提出后&#xff0c;卷积神经网络在计算机视觉和机器学习领域中很有名气&#xff0c;但并未起到主导作用。 这是因为 LeNet 在更大、更真实的数据集上训练的性能和可行性还有待研究。 事实上&#xff0c;在 20 世纪 90 年代到 2012 年之间的大部分时间里&#xff0c;…...

C语言扫盲

文章目录 C版本C语言特征GCCprintf数据类型函数指针内存管理void指针 Struct结构和Union结构typedef预处理器make工具cmake工具Projectintegral of sinc functionemulator embedded systeman event schedule 补充在线Linux终端安装Linux参考 建议还是国外教材学习…人家的PPT比…...

视频融合共享平台LntonAIServer视频智能分析抖动检测算法和过亮过暗检测算法

LntonAIServer作为一款智能视频监控平台&#xff0c;集成了多种先进的视频质量诊断功能&#xff0c;其中包括抖动检测和过暗检测算法。这些算法对于提升视频监控系统的稳定性和图像质量具有重要意义。 以下是对抖动检测算法和过暗检测算法的应用场景及优势的详细介绍。 一、L…...

【笔记篇】Davinci Configurator OS模块(上)

目录 1 简介1.1 架构概览2 功能描述2.1 特性2.2 规范偏离2.2.1 API 函数的泛型偏离2.2.2 可信函数 API 偏离2.2.3 服务保护偏离2.2.4 代码保护2.2.5 SyncScheduleTable API 偏差2.2.6 CheckTask/ISRMemoryAccess API 偏差2.2.7 中断 API 偏差2.2.8 Cross Core Getter API2.2.9 …...

19.3 打镜像部署到k8s中,prometheus配置采集并在grafana看图

本节重点介绍 : 打镜像&#xff0c;导出镜像&#xff0c;传输到各个节点并导入运行该项目配置prometheus和grafana 打镜像 本地build docker build -t ink8s-pod-metrics:v1 .build过程 导出镜像 docker save ink8s-pod-metrics > ink8s-pod-metrics.tar 传输到各个node…...

如何让系统u盘重新可用

目录 引言开始操作遇到的错误 引言 我们将 u 盘制作为系统 U 盘后&#xff0c;U 盘就没法在电脑中正常识别出了。当装完系统&#xff0c;不再需要 u 盘充当系统 U 盘想要正常使用该 U 盘&#xff0c;这时候就需要有些操作&#xff0c;让这个 U 盘正常化。 上图就是充当系统盘的…...

14.安卓逆向-frida基础-编写hook脚本2

免责声明&#xff1a;内容仅供学习参考&#xff0c;请合法利用知识&#xff0c;禁止进行违法犯罪活动&#xff01; 内容参考于&#xff1a;图灵Python学院 本人写的内容纯属胡编乱造&#xff0c;全都是合成造假&#xff0c;仅仅只是为了娱乐&#xff0c;请不要盲目相信。 工…...

车辆零部件检测和分割数据集-车体数据集-yolo格式-yolov5-yolov10可用

这些标签是用于实例分割任务中的类别&#xff0c;通常在汽车图像识别或自动驾驶技术中使用。以下是这些类别&#xff1a; back_bumper - 后保险杠back_glass - 后挡风玻璃back_left_door - 后左车门back_left_light - 后左灯back_right_door - 后右车门back_right_light - 后右…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

爬虫基础学习day2

# 爬虫设计领域 工商&#xff1a;企查查、天眼查短视频&#xff1a;抖音、快手、西瓜 ---> 飞瓜电商&#xff1a;京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空&#xff1a;抓取所有航空公司价格 ---> 去哪儿自媒体&#xff1a;采集自媒体数据进…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求&#xff0c;并检查收到的响应。它以以下模式之一…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的

修改bug思路&#xff1a; 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑&#xff1a;async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码"&#xff1a;Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力&#xff0c;从金融交易到交通管控&#xff0c;这些关乎国计民生的关键领域…...

什么是VR全景技术

VR全景技术&#xff0c;全称为虚拟现实全景技术&#xff0c;是通过计算机图像模拟生成三维空间中的虚拟世界&#xff0c;使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验&#xff0c;结合图文、3D、音视频等多媒体元素…...