当前位置: 首页 > news >正文

Spark 的 Skew Join 详解

    Skew Join 是 Spark 中为了解决数据倾斜问题而设计的一种优化机制。数据倾斜是指在分布式计算中,由于某些 key 具有大量数据,而其他 key 数据较少,导致某些分区的数据量特别大,造成计算负载不均衡。数据倾斜会导致个别节点出现性能瓶颈,影响整个任务的完成时间。

    Skew Join 的优化机制在 Spark 中主要解决了 JOIN 操作中的数据倾斜问题。为了更好地理解 Skew Join 的原理和实现,我们需要从数据倾斜产生的原因、Spark 如何识别数据倾斜、以及 Skew Join 的优化策略和底层实现等方面来进行详细解释。

一、什么是数据倾斜

        数据倾斜指的是当某些 key 关联了异常大量的数据,而其他 key 关联的数据量较少时,数据分布的不均衡会导致计算瓶颈。例如,在 JOIN 操作中,如果表 A 中某个 key 具有大量的数据,而表 B 中同样的 key 也有大量数据,当这两个表基于这个 key 进行 JOIN 时,由于该 key 被分配到一个或少数几个分区,相关的任务会处理大量的数据,而其他分区的任务数据量却较少。这会导致部分任务比其他任务运行时间长,从而影响整个任务的执行时间。

二、Spark 中如何识别数据倾斜

        在执行 JOIN 操作时,Spark 会通过数据采样和统计信息来检测是否存在数据倾斜。Spark SQL 可以通过分析数据分布,计算每个 key 的数据量,当发现某些 key 占据了大量的行时,Spark 会将其标记为 "倾斜的 key"。对于这些倾斜的 key,Spark 会进行特殊处理,避免过度集中在某些分区中。

Spark 的 Skew Join 优化主要依赖于配置参数和数据采样来检测并处理这些倾斜的 key

检测数据倾斜的主要参数:
  • spark.sql.autoSkewJoin.enabled: 默认是 false,如果设置为 true,Spark 会自动检测和处理数据倾斜的 JOIN 操作。
  • spark.sql.skewJoin.threshold: 用来设定 Spark 如何判断某个分区是否倾斜。该参数设置的值是数据倾斜的阈值,通常是一个比例值,如果某个分区的数据量超过该比例值,则会被视为倾斜的分区。

三、Skew Join 的底层原理

        当 Spark 识别出 JOIN 中存在数据倾斜时,Skew Join 会将倾斜的 key 拆分成多个子任务分别处理。具体而言,Skew Join 的主要思想是将倾斜的 key 拆分到多个不同的分区,从而将任务的计算负载均匀分布,避免单个分区处理过多数据。

以下是 Skew Join 的执行流程:

  1. 普通的非倾斜 key 处理

    对于普通的非倾斜 keySkew Join 没有特别的处理方式,Spark 直接按照 key 进行 Shuffle,将数据发送到相应的分区,并进行 JOIN 操作。
  2. 倾斜的 key 处理

        对于检测到的倾斜 key,Spark 会进行特殊处理,具体步骤如下:

  • Spark 会将倾斜的 key 的数据进行重新分片,将大数据量的倾斜 key 拆分成多个子分区。
  • 然后对于每一个子分区,分别与另一个表中的对应数据进行 JOIN
  • 通过多次 JOIN 操作,将这些子分区结果合并为最终的 JOIN 输出结果。

     3. Hash Salt(哈希加盐)

        为了避免倾斜的 key 被集中到同一个分区,Spark 会通过对倾斜的 key 添加一个随机的 salt(盐值)来打散数据。具体来说,Spark 会将倾斜的 key 拆分成多个子 key,通过附加随机数(salt),使得这些子 key 被分布到不同的分区。

伪代码展示:
// 倾斜 key 的原始 join
tableA.join(tableB, "key")// Skew Join 处理
val skewKeys = getSkewKeys()
for (skewKey <- skewKeys) {val saltedTableA = tableA.filter($"key" === skewKey).withColumn("salt", rand())val saltedTableB = tableB.filter($"key" === skewKey).withColumn("salt", rand())saltedTableA.join(saltedTableB, Seq("key", "salt"))
}

通过引入 salt,可以有效地将数据均匀分布到不同的分区,减少单个分区处理的数据量。

四、Skew Join 的源代码实现

        在 Spark SQL 中,Skew Join 是作为 PhysicalPlan 中 Join 的一个优化执行计划。关键类为 EnsureRequirements,其主要职责是对 Join 的物理计划执行前进行必要的调整,包括处理数据倾斜的 Skew Join 优化。

以下是 EnsureRequirements 中处理数据倾斜的相关部分源代码:

private def applySkewJoin(plan: SparkPlan): SparkPlan = plan match {case join @ ShuffledHashJoinExec(_, _, _, _, left, right) =>// 检查是否有数据倾斜if (isSkewed(join)) {// 处理 skew join,使用 hash salt 拆分倾斜的 keyval skewJoin = handleSkewJoin(join)skewJoin} else {join}case other => other
}

        在 EnsureRequirements 中,applySkewJoin 函数会检测当前的 JOIN 是否存在数据倾斜问题。如果检测到数据倾斜,handleSkewJoin 函数会对数据进行处理,创建一个带有 salt 的 Skew Join 执行计划。

具体实现步骤:
  1. 检测数据倾斜isSkewed(join) 函数负责检测 JOIN 中的分区是否有数据倾斜。通常,通过采样和统计每个分区的数据量,来判断某个分区的数据量是否超出设定的阈值(spark.sql.skewJoin.threshold)。

  2. 处理倾斜数据handleSkewJoin(join) 函数是 Skew Join 的核心实现。它会通过对倾斜的 key 添加 salt 进行打散,使得数据均匀分布到多个子分区。

private def handleSkewJoin(join: ShuffledHashJoinExec): SparkPlan = {val skewKeys = getSkewKeys(join)val saltedLeft = splitAndSalt(join.left, skewKeys)val saltedRight = splitAndSalt(join.right, skewKeys)saltedLeft.join(saltedRight)
}private def splitAndSalt(plan: SparkPlan, skewKeys: Seq[KeyType]): SparkPlan = {// 对每个倾斜 key 进行拆分并添加 saltplan.transform {case rdd: RDD[_] => rdd.mapPartitionsInternal { iter =>iter.flatMap { row =>val key = getJoinKey(row)if (skewKeys.contains(key)) {val salt = Random.nextInt(numSplits) // 随机生成 saltSome((key, salt, row))} else {Some((key, row))}}}}
}

        在上面的代码中,splitAndSalt 函数将每个倾斜的 key 拆分成多个子 key,并为它们添加随机 salt,从而打散数据,均匀分布到不同的分区。

五、Skew Join 的优化策略

Spark 中 Skew Join 的优化需要考虑以下几个方面:

  1. 自动启用 Skew Join:通过设置 spark.sql.autoSkewJoin.enabled 为 true,Spark 会自动检测并处理倾斜的 JOIN 操作。对于那些倾斜的分区,Spark 会自动进行 Skew Join 优化。

  2. 调优 salt 值salt 的值影响了倾斜数据被打散的粒度。通过调节 salt 的随机范围,可以控制数据的打散程度。如果 salt 的范围太小,数据可能仍然集中在某些分区;如果范围太大,则可能会产生过多的小分区,导致计算开销增加。

  3. 采样优化:通过调整采样参数,Spark 可以更好地识别出数据倾斜的 key,从而提高 Skew Join 的处理效率。spark.sql.skewJoin.threshold 参数允许用户设定数据倾斜的阈值。

  4. 数据预处理:在某些场景中,用户可以通过在数据加载和预处理阶段手动解决数据倾斜问题。例如,用户可以通过聚合或者过滤数据的方式,减少倾斜 key 的数据量。

六、总结

    Skew Join 是 Spark 中为了解决数据倾斜问题而提供的一种重要优化机制。其核心思想是通过检测数据倾斜的 key,并对这些 key 进行分片和哈希加盐处理,使得倾斜的数据被均匀分布到不同的分区,从而避免计算负载的不均衡。通过 Skew Join,Spark 可以显著提高 JOIN 操作的性能,尤其是在数据倾斜严重的场景下。

合理的参数调优和数据预处理是确保 Skew Join 有效的关键。

相关文章:

Spark 的 Skew Join 详解

Skew Join 是 Spark 中为了解决数据倾斜问题而设计的一种优化机制。数据倾斜是指在分布式计算中&#xff0c;由于某些 key 具有大量数据&#xff0c;而其他 key 数据较少&#xff0c;导致某些分区的数据量特别大&#xff0c;造成计算负载不均衡。数据倾斜会导致个别节点出现性能…...

讯飞星火编排创建智能体学习(一)最简单的智能体构建

目录 开篇 智能体的概念 编排创建智能体 创建第一个智能体 ​编辑 大模型节点 测试与调试 开篇 前段时间在华为全联接大会上看到讯飞星火企业级智能体平台的演示&#xff0c;对于拖放的可视化设计非常喜欢&#xff0c;刚开始以为是企业用户才有的&#xff0c;回来之后查…...

mac-m1安装nvm,docker,miniconda

1.安装minicondaMAC OS(M1)安装配置miniconda_mac-mini m1 conda-CSDN博客 2.安装nvm&#xff08;用第二个方法&#xff09;Mac电脑安装nvm(node包版本管理工具)-CSDN博客 3.安装docker dmg下载链接docker-toolbox-mac-docker-for-mac安装包下载_开源镜像站-阿里云 教程MacOS系…...

STM32F407之Flash

寄存器分类 一般寄存器分为只读存储器 (ROM) 随机存储器(RAM) 只读存储器 只读存储器也被称为ROM 在正常工作时只能读不能写。 只读存储器经历的阶段 ROM->PROM->EPROM->EEPROM ->Flash 优点&#xff1a;掉电不丢失&#xff0c;解构简单 缺点&#xff1a;只适…...

优化 Go 语言数据打包:性能基准测试与分析

场景&#xff1a;在局域网内&#xff0c;需要将多个机器网卡上抓到的数据包同步到一个机器上。 原有方案&#xff1a;tcpdump -w 写入文件&#xff0c;然后定时调用 rsync 进行同步。 改造方案&#xff1a;使用 Go 重写这个抓包逻辑及同步逻辑&#xff0c;直接将抓到的包通过网…...

【SQL】未订购的客户

目录 语法 需求 示例 分析 代码 语法 SELECT columns FROM table1 LEFT JOIN table2 ON table1.common_field table2.common_field; LEFT JOIN&#xff08;或称为左外连接&#xff09;是SQL中的一种连接类型&#xff0c;它用于从两个或多个表中基于连接条件返回左表…...

Qt(9.28)

widget.cpp #include "widget.h"Widget::Widget(QWidget *parent): QWidget(parent) {QPushButton *btn1 new QPushButton("登录",this);this->setFixedSize(640,480);btn1->resize(80,40);btn1->move(200,300);btn1->setIcon(QIcon("C:…...

javascript-冒泡排序

前言&#xff1a;好久没学习算法了&#xff0c;今天看了一个视频课&#xff0c;之前掌握很好的冒泡排序居然没写出来&#xff1f; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport"…...

第九届蓝桥杯嵌入式省赛程序设计题解析(基于HAL库)

一.题目分析 &#xff08;1&#xff09;.题目 &#xff08;2&#xff09;.题目分析 按键功能分析----存储位置的切换键 a. B1按下切换存储位置&#xff0c;切换后定时时间设定为当前位置存储的时间 b. B2短按切换时分秒高亮&#xff0c;设置完成后&#xff0c;长按把设置的时…...

MATLAB云计算集成:在云端扩展计算能力

摘要 MATLAB云计算集成是指将MATLAB的计算能力与云平台的弹性资源相结合&#xff0c;以实现高性能计算、数据处理和算法开发。本文详细介绍了MATLAB云计算的基本概念、优势、配置要点以及编程实践。 1. 云计算概述 云计算是一种通过互联网提供计算资源&#xff08;如服务器、…...

基于BeagleBone Black的网页LED控制功能(flask+gpiod)

目录 项目介绍硬件介绍项目设计开发环境功能实现控制LED外设构建Webserver 功能展示项目总结 &#x1f449; 【Funpack3-5】基于BeagleBone Black的网页LED控制功能 &#x1f449; Github: EmbeddedCamerata/BBB_led_flask_web_control 项目介绍 基于 BeagleBoard Black 开发板…...

【C语言】单片机map表详细解析

1、RO Size、RW Size、ROM Size分别是什么 首先将map文件翻到最下面&#xff0c;可以看到 1.1 RO Size&#xff1a;只读段 Code&#xff1a;程序的代码部分&#xff08;也就是 .text 段&#xff09;&#xff0c;它存放了程序的指令和可执行代码。 RO Data&#xff1a;只读…...

Java中的继承和实现

Java中的继承和实现在面向对象编程中扮演着不同的角色&#xff0c;它们之间的主要区别可以从以下几个方面进行阐述&#xff1a; 1. 定义和用途 继承&#xff08;Inheritance&#xff09;&#xff1a;继承是面向对象编程中的一个基本概念&#xff0c;它允许我们定义一个类&…...

uniapp云打包

ios打包 没有mac电脑,使用香蕉云编 先登录香蕉云编这个工具,新建csr文件——把csr文件下载到你电脑本地: 然后,登录苹果开发者中心 生成p12证书 1、点击+号创建证书 创建证书的时候一定要选择ios distribution app store and ad hoc类型的证书 2、上传刚才从本站生成的…...

端口安全技术原理与应用

目录 概述 端口安全原理 端口安全术语 二层安全地址配置 端口模式下配置 全局模式下配置 动态学习 二层数据包处理流程 三层安全地址配置 三层数据包处理流程 端口安全违例动作和安全地址老化时间 查看命令 端口安全的注意事项 小结 概述 园区网的接入安全关系着…...

数据集-目标检测系列-鲨鱼检测数据集 shark >> DataBall

数据集-目标检测系列-鲨鱼检测数据集 shark >> DataBall 数据集-目标检测系列-鲨鱼检测数据集 shark 数据量&#xff1a;6k 数据样例项目地址&#xff1a; gitcode: https://gitcode.com/DataBall/DataBall-detections-100s/overview github: https://github.com/Te…...

数字乡村解决方案-3

1. 国家大数据战略与数字乡村 中国第十三个五年规划纲要强调实施国家大数据战略&#xff0c;加快建设数字中国&#xff0c;推进数据资源整合和开放共享&#xff0c;保障数据安全&#xff0c;以大数据助力产业转型升级和提高社会治理的精准性与有效性。 2. 大数据与数字经济 …...

WPF文本框无法输入小数点

问题描述 在WPF项目中&#xff0c;文本框BInding双向绑定了数据Text“{UpdateSourceTriggerPropertyChanged}”&#xff0c;但手套数据是double类型&#xff0c;手动输入数据时&#xff0c;小数点输入不进去 解决办法&#xff1a; 在App.xaml.cs文件中添加语句&#xff1a; …...

R开头的后缀:RE

RE表示方位上的向后&#xff0c;一种时空上的折返&#xff0c;和表示否定意味的不。 68.re- 空间顺序 ①表示"向后&#xff0c;相反&#xff0c;不" RE表示正向抵抗的力的词语&#xff0c;和情绪的词语&#xff0c;用来表示一种极力的反抗和拒绝&#xff0c;包括…...

Vue2配置环境变量的注意事项

在实际开发中时常会遇到需要开发环境与生产环境中一些参数的替换,为了方便线上线下环境变量切换可以利用node中的process进行环境变量管理 实现步骤如下: 1.在 根目录 新增环境文件 .env.development 和 .env.production 注意文件名称保持一致( 需要强调的是文件中的变量名切…...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器

——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的​​一体化测试平台​​&#xff0c;覆盖应用全生命周期测试需求&#xff0c;主要提供五大核心能力&#xff1a; ​​测试类型​​​​检测目标​​​​关键指标​​功能体验基…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​&#xff1a; 下载安装DevEco Studio 4.0&#xff08;支持HarmonyOS 5&#xff09;配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​&#xff1a; ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...

【Redis】笔记|第8节|大厂高并发缓存架构实战与优化

缓存架构 代码结构 代码详情 功能点&#xff1a; 多级缓存&#xff0c;先查本地缓存&#xff0c;再查Redis&#xff0c;最后才查数据库热点数据重建逻辑使用分布式锁&#xff0c;二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...