yolox训练自己的数据集
环境搭建
gpu按自己情况安装
nvidia-smi 查看自己的版本
CUDA和cudnn 按自己的安装,我的驱动551.76,注意不要用最新的,官网只要求驱动是大于等于,可以用低版本的cuda,我安装的是CUDA 11.1
cuda下载后,下载cudnn将解压的cuDNN压缩包内的三个文件夹复制到CUDA安装目录下:
bin lib include
执行nvcc -V验证
C:\Users\Administrator>nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Tue_Sep_15_19:12:04_Pacific_Daylight_Time_2020
Cuda compilation tools, release 11.1, V11.1.74
Build cuda_11.1.relgpu_drvr455TC455_06.29069683_0
安装torch
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch-lts -c conda-forge
cd到代码目录下,E:\code\YOLOX-0.3.0
执行 pip3 install -v -e . 安装
最后pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
如果有版本问题,卸载重新调整
比如重新安装
pip install protobuf3.20.1
pip install numpy1.19.5
pip install matplotlib3.3.4 scikit-image0.18.3 等
通过Labelimg标注数据
执行voc2txt.py 转换标注的数据为coco
if __name__ == "__main__":# 定义类别,要与yolox/data/datasets/coco_classes.py一致COCO_CLASSES = ("person")new_labeled_img_dir = "E:/data/1/table" # 新标注的文件train_dir = "E:/code/YOLOX-0.3.0/datasets/coco/train2017" # 目标文件夹trainval_dir = "E:/code/YOLOX-0.3.0/datasets/coco/val2017" # 目标文件夹valval_percent = 0.1 # train val 比例cache_dir = 'E:/data/yolox/cache' # 缓存图片的文件路径!!!!!一定要删除,被坑一个星期!!!!!!!!# 按比例随机拆分到到目标目录,会同时移动.jpg和.xml文件splitLabeled(val_percent, new_labeled_img_dir, train_dir, val_dir)#回收旧数据,提高新数据占比,最新100个数据不参与回收reduceData(train_dir,val_dir,max_data=500000,val_percent=val_percent,recycle_dir='E:/data/yolox/recycle')# 生成json# trainjson_file = "E:/code/YOLOX-0.3.0/datasets/coco/annotations/instances_train2017.json"image_id = 202200000parseXmlFiles(train_dir, json_file, image_id, COCO_CLASSES)# evaljson_file = "E:/code/YOLOX-0.3.0/datasets/coco/annotations/instances_val2017.json"image_id = 0parseXmlFiles(val_dir, json_file, image_id, COCO_CLASSES)# 删除 cache 文件delImgCache(cache_dir)
训练
修改train.py ckpt、batchsize
修改YOLOX-0.3.0\exps\example\custom\yolox_s.py的路径和num_classes
修改YOLOX-0.3.0\yolox\data\datasets\coco_classes.py
E:\code\YOLOX-0.3.0\下执行train.py
测试模型
YOLOX-0.3.0\tools\demo.py 用demo.py 测试图片,assets/an.png为测试的图片,last_epoch_ckpt.pth为自己训练的模型
参数
image -f E:/code/YOLOX-0.3.0/exps/example/custom/yolox_s.py -c E:\code\YOLOX-0.3.0\YOLOX_outputs\yolox_s\last_epoch_ckpt.pth --path assets/an.png --conf 0.25 --nms 0.45 --tsize 640 --save_result --device gpu
测试自己训练的模型
将自己训练的模型导出onnx
参数–output-name yolox_s.onnx -f E:/code/YOLOX-0.3.0/exps/example/custom/yolox_s.py -c E:\code\YOLOX-0.3.0\YOLOX_outputs\yolox_s\last_epoch_ckpt.pth
在YOLOX-0.3.0目录下执行
YOLOX-0.3.0\tools\export_onnx.py
生成yolox_s.onnx
相关文章:

yolox训练自己的数据集
环境搭建 gpu按自己情况安装 nvidia-smi 查看自己的版本 CUDA和cudnn 按自己的安装,我的驱动551.76,注意不要用最新的,官网只要求驱动是大于等于,可以用低版本的cuda,我安装的是CUDA 11.1 cuda下载后,…...

Centos8.5.2111(1)之本地yum源搭建和docker部署与网络配置
由于后边可能要启动多个服务,避免服务之间相互干扰,本课程建议每个服务独立部署到一台主机上,这样做会导致资源占用过多,可能会影响系统的运行。服务器部署一般不采用GUI图形界面部署,而是采用命令行方式部署ÿ…...

基于SSM+小程序的自习室选座与门禁管理系统(自习室1)(源码+sql脚本+视频导入教程+文档)
👉文末查看项目功能视频演示获取源码sql脚本视频导入教程视频 1 、功能描述 1、管理员实现了首页、基础数据管理、论坛管理、公告信息管理、用户管理、座位管理等 2、用户实现了在论坛模块通过发帖与评论帖子的方式进行信息讨论,也能对账户进行在线充值…...

支付宝远程收款api之小荷包跳转码
想要生成小荷包跳转码的二维码,需要进行以下步骤: 1、开通支付宝小荷包的收款功能权限 2、获取支付宝的小荷包收款码和支付宝账户的UID已经手机号等相应信息(可能会有变动) 3、可能需要一定的代码基础,讲所需信息填…...

STM32 F1移植FATFS文件系统 USMART组件测试相关函数功能
STM32 F1移植FATFS文件系统 使用USMART调试组件测试相关函数功能 文章目录 STM32 F1移植FATFS文件系统 使用USMART调试组件测试相关函数功能前言部分主要相关代码# USMART介绍1. mf_scan_files 扫描磁盘文件2. mf_mount 挂载磁盘3. mf_open 打开文件4. mf_read 读数据内容5. mf…...

YOLOv8改进 | 融合篇,YOLOv8主干网络替换为MobileNetV3+CA注意机制+添加小目标检测层(全网独家首发,实现极限涨点)
原始 YOLOv8 训练结果: YOLOv8 + MobileNetV3改进后训练结果: YOLOv8 + MobileNetV3 + CA 注意机制 + 添加小目标检测层改进后训练结果(极限涨点): 摘要 小目标检测难点众多,导致很多算法对小目标的检测效果远不如大中型目标。影响算法性能的主要原因如下:第一,小目…...

深入探索机器学习中的目标分类算法
在当今数据驱动的世界中,机器学习(Machine Learning, ML)正逐渐成为解决问题的重要工具。在众多机器学习任务中,目标分类(Classification)算法尤其受到关注。本文将深入探讨目标分类算法的基本概念、常见类…...

一文上手SpringSecurity【七】
之前我们在测试的时候,都是使用的字符串充当用户名称和密码,本篇将其换成MySQL数据库. 一、替换为真实的MySQL 1.1 引入依赖 <dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>8.0.33</v…...

深圳龙链科技:全球区块链开发先锋,领航Web3生态未来
【深圳龙链科技】是全球领先的Web3区块链技术开发公司,专注于为全球客户提供创新高效的区块链解决方案。 深圳龙链科技由币安资深股东携手香港领先的Web3创新枢纽Cyberport联袂打造,立足于香港这一国际金融中心,放眼全球,汇聚了华…...

手写代码,利用 mnist 数据集测试对比 kan 和 cnn/mlp 的效果
你好呀,我是董董灿。 kan 模型火了一段时间,很多人从理论的角度给出了非常专业的解读,基本结论是:从目前来看,kan 很难替代 mlp 成为一个更加经典的模型结构。 我这里就不从理论方面进行回答了,直接给出一…...

基于Java+SQL Server2008开发的(CS界面)个人财物管理系统
一、需求分析 个人财务管理系统是智能化简单化个人管理的重要的组成部分。并且随着计算机技术的飞速发展,计算机在管理方面应用的旁及,利用计算机来实现个人财务管理势在必行。本文首先介绍了个人财务管理系统的开发目的,其次对个人财务管理…...

15年408计算机网络
第一题: 解析: 接收方使用POP3向邮件服务器读取邮件,使用的TCP连接,TCP向上层提供的是面向连接的,可靠的数据传输服务。 第二题: 解析:物理层-不归零编码和曼彻斯特编码 编码1:电平在…...
C++ const关键字
const 1. 修饰变量(包括函数参数 函数返回值) const int v0 10; v0 0; // error 不能修改const修饰的变量 2. 修饰指针 int v1 10; int v2 20; int v3 30; 2.1 常量指针 const 在指针左边,左定值,即不能通过指针修改该…...

python爬虫案例——腾讯网新闻标题(异步加载网站数据抓取,post请求)(6)
文章目录 前言1、任务目标2、抓取流程2.1 分析网页2.2 编写代码2.3 思路分析前言 本篇案例主要讲解异步加载网站如何分析网页接口,以及如何观察post请求URL的参数,网站数据并不难抓取,主要是将要抓取的数据接口分析清楚,才能根据需求编写想要的代码。 1、任务目标 目标网…...
LeetCode416:分割等和子集
题目链接:416. 分割等和子集 - 力扣(LeetCode) 代码如下: class Solution { public:bool canPartition(vector<int>& nums) {int m nums.size();vector<int> dp(10010, 0);int sum 0;for(int i 0; i < m;…...
自定义异常注解处理框架
首先我们定义两个用于检验string和List的注解 import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target;/*** author caiyi.yu* 自定义非空判断*/ Target(Elemen…...

【小程序】微信小程序课程 -3 快速上手之常用方法
目录 1、 对话框 1.1 模态对话框 1.2 消息对话框 2、 存储 2.1 同步 2.1.1 同步保存数据 2.1.2 同步获取数据 2.1.3 同步删除数据 2.1.4 同步清空数据 2.2 异步 2.2.1 异步保存数据 2.2.2 异步获取数据 2.2.3 异步删除数据 2.2.4 异步清空数据 3、 上拉加载更多…...

iOS 小组件
基本知识 时间轴 小组件通过AppIntentTimelineProvider进行 UI 刷新 struct Provider: AppIntentTimelineProvider {func placeholder(in context: Context) -> SimpleEntry {// 添加占位的(选择添加的时候使用)// todo}func snapshot(for configu…...

【2.使用VBA自动填充Excel工作表】
目录 前言什么是VBA如何使用Excel中的VBA简单基础入门控制台输出信息定义过程(功能)定义变量常用的数据类型Set循环For To 我的需求开发过程效果演示文件情况测试填充源文件测试填充目标文件 全部完整的代码sheet1中的代码,对应A公司工作表Us…...

算法记录——链表
2.链表 2.1判断是否是回文链表 1.方法一:利用栈反转链表 /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode() {}* ListNode(int val) { this.val val; }* ListNode(int val, ListNode…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...

Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...

以光量子为例,详解量子获取方式
光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...