当前位置: 首页 > news >正文

`torch.utils.data`模块

在PyTorch中,torch.utils.data模块提供了许多有用的工具来处理和加载数据。以下是对您提到的DataLoader, Subset, BatchSampler, SubsetRandomSampler, 和 SequentialSampler的详细解释以及使用示例。

1. DataLoader

DataLoader是PyTorch中用于加载数据的一个非常重要的类。它封装了数据集(Dataset),并提供了一个可迭代的对象,支持批量加载、打乱数据、多进程数据加载等功能。

示例代码

from torch.utils.data import DataLoader, TensorDataset
import torch# 假设我们有一些数据
data = torch.randn(100, 3)  # 100个样本,每个样本3个特征
labels = torch.randint(0, 2, (100,))  # 100个标签,每个标签是0或1# 创建数据集
dataset = TensorDataset(data, labels)# 创建DataLoader
dataloader = DataLoader(dataset, batch_size=10, shuffle=True)# 遍历DataLoader
for data_batch, label_batch in dataloader:print(data_batch.shape)  # 应为torch.Size([10, 3])print(label_batch.shape)  # 应为torch.Size([10])

2. Subset

Subset是一个用于从数据集中选择特定索引的子集的类。这对于分割数据集为训练集、验证集和测试集非常有用。

示例代码

from torch.utils.data import Subset# 假设dataset是之前创建的TensorDataset
# 选择索引为0到49的样本作为训练集
indices = list(range(50))
train_subset = Subset(dataset, indices)# 现在train_subset只包含前50个样本
train_dataloader = DataLoader(train_subset, batch_size=10, shuffle=True)

3. BatchSampler

BatchSampler用于从给定的样本列表中批量地采样索引。这允许用户自定义每个batch的采样方式。

示例代码

from torch.utils.data.sampler import BatchSampler, SequentialSampler# 假设indices是包含所有样本索引的列表
indices = list(range(100))
batch_sampler = BatchSampler(sampler=SequentialSampler(indices), batch_size=10, drop_last=False)# batch_sampler将返回索引的列表,每个列表代表一个batch
for batch_indices in batch_sampler:print(batch_indices)  # 输出形如[0, 1, 2, ..., 9]的列表

4. SubsetRandomSampler

SubsetRandomSampler用于从指定的索引列表中随机采样,但保证每个元素只被采样一次(除非指定了replacement=True)。

示例代码

from torch.utils.data.sampler import SubsetRandomSampler# 假设indices是包含所有样本索引的列表
indices = list(range(100))
subset_sampler = SubsetRandomSampler(indices)# subset_sampler可以传递给DataLoader来打乱数据
dataloader = DataLoader(dataset, batch_size=10, sampler=subset_sampler)

5. SequentialSampler

SequentialSampler简单地按照给定的索引顺序来采样。这通常用于不需要打乱数据的场景。

示例代码(已在BatchSampler示例中展示):

from torch.utils.data.sampler import SequentialSampler# 假设indices是包含所有样本索引的列表
indices = list(range(100))
sampler = SequentialSampler(indices)# sampler可以传递给DataLoader,但通常不需要显式创建SequentialSampler,
# 因为DataLoader的shuffle=False参数已经实现了相同的功能。

这些工具结合起来可以非常灵活地处理PyTorch中的数据加载和采样任务。

相关文章:

`torch.utils.data`模块

在PyTorch中,torch.utils.data模块提供了许多有用的工具来处理和加载数据。以下是对您提到的DataLoader, Subset, BatchSampler, SubsetRandomSampler, 和 SequentialSampler的详细解释以及使用示例。 1. DataLoader DataLoader是PyTorch中用于加载数据的一个非常…...

深入理解 `strncat()` 函数:安全拼接字符串

目录: 前言一、 strncat() 函数的基本用法二、 示例代码三、 strncat() 与 strcat() 的区别四、 注意事项五、 实际应用场景总结 前言 在C语言中,字符串操作是编程中非常常见的需求。strncat() 函数是标准库中用于字符串拼接的一个重要函数,…...

OpenCV_自定义线性滤波(filter2D)应用详解

OpenCV filter2D将图像与内核进行卷积,将任意线性滤波器应用于图像。支持就地操作。当孔径部分位于图像之外时,该函数根据指定的边界模式插值异常像素值。 卷积核本质上是一个固定大小的系数数组,数组中的某个元素被作为锚点(一般…...

设计模式之装饰模式(Decorator)

前言 这个模式带给我们有关组合跟继承非常多的思考 定义 “单一职责” 模式。动态(组合)的给一个对象增加一些额外的职责。就增加功能而言,Decorator模式比生成子类(继承)更为灵活(消除重复代码 & 减少…...

大数据-146 Apache Kudu 安装运行 Dockerfile 模拟集群 启动测试

点一下关注吧!!!非常感谢!!持续更新!!! 目前已经更新到了: Hadoop(已更完)HDFS(已更完)MapReduce(已更完&am…...

React入门准备

React是什么 React是一个用于构建用户界面的JavaScript框架,用于构建“可预期的”和“声明式的”Web用户界面,特别适合于构建那些数据会随时间改变的大型应用的用户界面。 它起源于Facebook的内部项目,因为对市场上所有JavaScript MVC框架都…...

robomimic基础教程(四)——开源数据集

robomimic开源了大量数据集及仿真环境,数据集标准格式为HDF5 目录 一、基础要求 二、使用步骤 1. 下载数据集 2. 后处理 3. 训练 4. 查看训练结果 三、HDF5数据集结构与可视化 1. 数据集结构 (1)根级别(data 组 group&a…...

胤娲科技:AI界的超级充电宝——忆阻器如何让LLM告别电量焦虑

当AI遇上“记忆橡皮擦”,电量不再是问题! 嘿,朋友们,你们是否曾经因为手机电量不足而焦虑得像个无头苍蝇?想象一下,如果这种“电量焦虑”也蔓延到了AI界, 特别是那些聪明绝顶但“耗电如喝水”的…...

前端大模型入门:使用Transformers.js手搓纯网页版RAG(二)- qwen1.5-0.5B - 纯前端不调接口

书接上文,本文完了RAG的后半部分,在浏览器运行qwen1.5-0.5B实现了增强搜索全流程。但受限于浏览器和模型性能,仅适合于研究、离线和高隐私场景,但对前端小伙伴来说大模型也不是那么遥不可及了,附带全部代码&#xff0c…...

K-means聚类分析对比

K-means聚类分析,不同K值聚类对比,该内容是关于K-means聚类分析的,主要探讨了不同K值对聚类结果的影响。K-means聚类是一种常见的数据分析方法,用于将数据集划分为K个不同的类别。在这个过程中,选择合适的K值是非常关键…...

tar命令:压缩、解压的好工具

一、命令简介 用途: tar​ 命令用于创建归档文件(tarball),以及从归档文件中提取文件。 标签: 文件管理,归档。 特点: 归档文件可以保留原始文件和目录的层次结构,通常使用 .tar ​…...

Mac电脑上最简单安装Python的方式

背景 最近换了一台新的 MacBook Air 电脑,所有的开发软件都没有了,需要重新配环境,而我现在最常用的开发程序就是Python。这篇文章记录一下我新Mac电脑安装Python的全过程,也给大家一些思路上的提醒。 以下是我新电脑的配置&…...

Linux基础命令cd详解

cd(change directory)命令是 Linux 中用于更改当前工作目录的基础命令。它没有很多复杂的参数,但它的使用非常频繁。以下是 cd 命令的详细说明及示例。 基本语法 cd [选项] [路径] 常用选项 -L : 使用逻辑路径(默认选项&…...

【大模型对话 的界面搭建-Open WebUI】

Open WebUI 前身就是 Ollama WebUI,为 Ollama 提供一个可视化界面,可以完全离线运行,支持 Ollama 和兼容 OpenAI 的 API。 github网址 https://github.com/open-webui/open-webui安装 第一种 docker安装 如果ollama 安装在同一台服务器上&…...

如何在算家云搭建text-generation-webui(文本生成)

一、text-generation-webui 简介 text-generation-webui 是一个流行的用于文本生成的 Gradio Web UI。支持 transformers、GPTQ、AWQ、EXL2、llama.cpp (GGUF)、Llama 模型。 它的特点如下, 3 种界面模式:default (two columns), notebook, chat支持多…...

【Java SE】初遇Java,数据类型,运算符

🔥博客主页🔥:【 坊钰_CSDN博客 】 欢迎各位点赞👍评论✍收藏⭐ 1. Java 概述 1.1 Java 是什么 Java 是一种高级计算机语言,是一种可以编写跨平台应用软件,完全面向对象的程序设计语言。Java 语言简单易学…...

XSS(内含DVWA)

目录 一.XSS的攻击方式: 1. 反射型 XSS(Reflected XSS) 2. 存储型 XSS(Stored XSS) 3. DOM型 XSS(DOM-based XSS) 总结 二..XSS的危害 三.常见的XSS方式 1.script标签 四.常见基本过滤方…...

【SpringCloud】环境和工程搭建

环境和工程搭建 1. 案例介绍1.1 需求1.2 服务拆分服务拆分原则服务拆分⽰例 2. 项目搭建 1. 案例介绍 1.1 需求 实现⼀个电商平台(不真实实现, 仅为演⽰) ⼀个电商平台包含的内容⾮常多, 以京东为例, 仅从⾸⻚上就可以看到巨多的功能 我们该如何实现呢? 如果把这些功能全部…...

基于Java开发的(控制台)模拟的多用户多级目录的文件系统

多级文件系统 1 设计目的 为了加深对文件系统内部功能和实现过程的理解,设计一个模拟的多用户多级目录的文件系统,并实现具体的文件物理结构、目录结构以及较为完善的文件操作命令集。 2 设计内容 2.1系统操作 操作命令风格:本文件系统的…...

tailwindcss group-hover 不生效

无效 <li class"group"><div class"tw-opacity-0 group-hover:tw-opacity-100" /> </li>配了tw前缀&#xff0c;group要改成tw-group // tailwind.config.jsmodule.exports {prefix: "tw-", }<li class"tw-group&q…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

HTML 列表、表格、表单

1 列表标签 作用&#xff1a;布局内容排列整齐的区域 列表分类&#xff1a;无序列表、有序列表、定义列表。 例如&#xff1a; 1.1 无序列表 标签&#xff1a;ul 嵌套 li&#xff0c;ul是无序列表&#xff0c;li是列表条目。 注意事项&#xff1a; ul 标签里面只能包裹 li…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件&#xff0c;然后打开终端&#xff0c;进入下载文件夹&#xff0c;键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...