当前位置: 首页 > news >正文

遗传算法与深度学习实战——使用进化策略实现EvoLisa

遗传算法与深度学习实战——使用进化策略实现EvoLisa

    • 0. 前言
    • 1. 使用进化策略实现 EvoLisa
    • 2. 运行结果
    • 相关链接

0. 前言

我们已经学习了进化策略 (Evolutionary Strategies, ES) 的基本原理,并且尝试使用 ES 解决了函数逼近问题。函数逼近是一个很好的基准问题,但为了充分展示 ES 的作用,本节中,我们将重新思考 EvoLisa 问题,采用 ES 作为解决策略,以将 ES 和常规遗传算法进行对比。

1. 使用进化策略实现 EvoLisa

接下来,使用进化策略 (Evolutionary Strategies, ES) 通过复现 EvoLisa 项目重建《蒙娜丽莎》图像。

import random
import numpy as npfrom deap import algorithms
from deap import base
from deap import creator
from deap import toolsimport os
import cv2
import urllib.request
import matplotlib.pyplot as plt
from IPython.display import clear_outputdef load_target_image(image_url, color=True, size=None):image_path = "target_image"    urllib.request.urlretrieve(image_url,image_path)if color:target = cv2.imread(image_path, cv2.IMREAD_COLOR)# Switch from bgr to rgbtarget = cv2.cvtColor(target, cv2.COLOR_BGR2RGB)else:target = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)if size:# Only resizes image if it is needed!target = cv2.resize(src=target, dsize=size, interpolation=cv2.INTER_AREA)return targetdef show_image(img_arr):    plt.figure(figsize=(10,10))plt.axis("off")plt.imshow(img_arr/255)plt.show()def show_results(history, img_arr, org):plt.figure(figsize=(10,10))plt.tight_layout()plt.subplot(221)plt.axis("off")plt.imshow(img_arr/255)plt.title('best of generation')plt.subplot(222)plt.axis("off")plt.imshow(org/255)plt.title('target image')plt.subplot(212)lh = len(history)plt.xlim([lh-50, lh])plt.plot(history)plt.title('min fitness by generation') plt.show()polygons = 255 #@param {type:"slider", min:10, max:1000, step:1}
size = 32 #@param {type:"slider", min:16, max:1000, step:2}
target_image = "Mona Lisa" #@param ["Mona Lisa", "Stop Sign", "Landscape", "Celebrity", "Art", "Abstract"]
report_every_gen = 10 #@param {type:"slider", min:1, max:100, step:1}
number_generations = 10000 #@param {type:"slider", min:100, max:10000, step:10}POLYGONS = polygons
SIZE = (size, size)target_urls = { "Mona Lisa" : 'https://upload.wikimedia.org/wikipedia/commons/b/b7/Mona_Lisa_face_800x800px.jpg',"Stop Sign" : 'https://images.uline.com/is/image//content/dam/images/H/H2500/H-2381.jpg',"Landscape" : 'https://www.adorama.com/alc/wp-content/uploads/2018/11/landscape-photography-tips-yosemite-valley-feature.jpg',"Celebrity" : 'https://s.abcnews.com/images/Entertainment/WireAP_91d6741d1954459f9993bd7a2f62b6bb_16x9_992.jpg',"Art" : "http://www.indianruminations.com/wp-content/uploads/what-is-modern-art-definition-2.jpg","Abstract" : "https://scx2.b-cdn.net/gfx/news/2020/abstractart.jpg"}target_image_url = target_urls[target_image]
target = load_target_image(target_image_url, size=SIZE)
show_image(target)
print(target.shape)#polygon genes
GENE_LENGTH = 10
NUM_GENES = POLYGONS * GENE_LENGTH#create a sample invidiual
individual = np.random.uniform(0,1,NUM_GENES)
print(individual)
# [0.62249533 0.44090963 0.14777921 ... 0.57283261 0.9325435  0.25907929]def extract_genes(genes, length): for i in range(0, len(genes), length): yield genes[i:i + length]def render_individual(individual):if isinstance(individual,list):individual = np.array(individual)canvas = np.zeros(SIZE+(3,))radius_avg = (SIZE[0] + SIZE[1]) / 2 / 6genes = extract_genes(individual, GENE_LENGTH)for gene in genes:try:overlay = canvas.copy()# alternative drawing methods circle or rectangle# circle brush uses a GENE_LENGTH of 7# center = (0, 1) [2]# radius = (2) [3]# color = (3,4,5) [6]# alpha = (6) [7]#cv2.circle(#    overlay,#    center=(int(gene[1] * SIZE[1]), int(gene[0] * SIZE[0])),#    radius=int(gene[2] * radius_avg),#    color=color,#    thickness=-1,#)# rectangle brush uses GENE_LENGTH = 8# top left = (0, 1) [2]# btm right = (2, 3) [4]# color = (4, 5, 6) [7]# alpha = (7) [8]#cv2.rectangle(overlay, (x1, y1), (x2, y2), color, -1)    # polyline brush uses GENE_LENGTH = 10# pts = (0, 1), (2, 3), (4, 5) [6]      # color = (6, 7, 8) [9]# alpha = (9) [10]x1 = int(gene[0] * SIZE[0])x2 = int(gene[2] * SIZE[0])x3 = int(gene[4] * SIZE[0])y1 = int(gene[1] * SIZE[1])y2 = int(gene[3] * SIZE[1])y3 = int(gene[5] * SIZE[1])color = (gene[6:-1] * 255).astype(int).tolist() pts = np.array([[x1,y1],[x2,y2],[x3,y3]], np.int32)  pts = pts.reshape((-1, 1, 2))pts = np.array([[x1,y1],[x2,y2],[x3,y3]])cv2.fillPoly(overlay, [pts], color)alpha = gene[-1]canvas = cv2.addWeighted(overlay, alpha, canvas, 1 - alpha, 0)  except:passreturn canvasrender = render_individual(individual)
show_image(render)from skimage.metrics import structural_similarity as ss
#@title Fitness Function
def fitness_mse(render):"""Calculates Mean Square Error Fitness for a render"""error = (np.square(render - target)).mean(axis=None)return errordef fitness_ss(render):"""Calculated Structural Similiarity Fitness"""index = ss(render, target, multichannel=True)return 1-indexprint(fitness_mse(render))IND_SIZE = NUM_GENES
MIN_VALUE = -1
MAX_VALUE = 1
MIN_STRATEGY = 0.5
MAX_STRATEGY = 5CXPB = .6
MUTPB = .3creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", list, typecode="d", fitness=creator.FitnessMin, strategy=None)
creator.create("Strategy", list, typecode="d")def generateES(icls, scls, size, imin, imax, smin, smax):  ind = icls(random.uniform(imin, imax) for _ in range(size))  ind.strategy = scls(random.uniform(smin, smax) for _ in range(size))  return inddef checkStrategy(minstrategy):def decorator(func):def wrappper(*args, **kargs):children = func(*args, **kargs)for child in children:for i, s in enumerate(child.strategy):if s < minstrategy:child.strategy[i] = minstrategyreturn childrenreturn wrappper
return decoratordef uniform(low, up, size=None):try:return [random.uniform(a, b) for a, b in zip(low, up)]except TypeError:return [random.uniform(a, b) for a, b in zip([low] * size, [up] * size)]def clamp(low, up, n):return max(low, min(n, up))def custom_blend(ind1, ind2, alpha):    for i, (x1, s1, x2, s2) in enumerate(zip(ind1, ind1.strategy,ind2, ind2.strategy)):# Blend the valuesgamma = (1. + 2. * alpha) * random.random() - alphaind1[i] = clamp(0.0, 1.0, (1. - gamma) * x1 + gamma * x2)ind2[i] = clamp(0.0, 1.0, gamma * x1 + (1. - gamma) * x2)# Blend the strategiesgamma = (1. + 2. * alpha) * random.random() - alphaind1.strategy[i] = (1. - gamma) * s1 + gamma * s2ind2.strategy[i] = gamma * s1 + (1. - gamma) * s2return ind1, ind2toolbox = base.Toolbox()
toolbox.register("individual", generateES, creator.Individual, creator.Strategy,IND_SIZE, MIN_VALUE, MAX_VALUE, MIN_STRATEGY, MAX_STRATEGY)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("mate", custom_blend, alpha=0.5)
toolbox.register("mutate", tools.mutESLogNormal, c=1.0, indpb=0.06)
toolbox.register("select", tools.selTournament, tournsize=5)toolbox.decorate("mate", checkStrategy(MIN_STRATEGY))
toolbox.decorate("mutate", checkStrategy(MIN_STRATEGY))def evaluate(individual):render = render_individual(individual)print('.', end='')
return fitness_mse(render),  #using MSE for fitness#toolbox.register("mutate", tools.mutGaussian, mu=0.0, sigma=.1, indpb=.25)
toolbox.register("evaluate", evaluate)NGEN = number_generations
RGEN = report_every_gen
CXPB = .6
MUTPB = .3
MU, LAMBDA = 100, 250
pop = toolbox.population(n=MU)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", np.mean)
stats.register("std", np.std)
stats.register("min", np.min)
stats.register("max", np.max) best = None
history = []for g in range(NGEN):pop, logbook = algorithms.eaMuCommaLambda(pop, toolbox, mu=MU, lambda_=LAMBDA, cxpb=CXPB, mutpb=MUTPB, ngen=RGEN, stats=stats, halloffame=hof, verbose=False)best = hof[0]#pop, logbook = algorithms.eaSimple(pop, toolbox, #         cxpb=CXPB, mutpb=MUTPB, ngen=100, stats=stats, halloffame=hof, verbose=False)#best = hof[0] clear_output()  render = render_individual(best) history.extend([clamp(0.0, 5000.0, l["min"]) for l in logbook])show_results(history, render, target)  print(f"Gen ({(g+1)*RGEN}) : best fitness = {fitness_mse(render)}")

2. 运行结果

下图显示了代码的运行结果,作为对比,图中还显示了使用经典遗传算法生成的结果。

代码运行结果

相关链接

遗传算法与深度学习实战(1)——进化深度学习
遗传算法与深度学习实战(4)——遗传算法(Genetic Algorithm)详解与实现
遗传算法与深度学习实战(5)——遗传算法中常用遗传算子
遗传算法与深度学习实战(6)——遗传算法框架DEAP
遗传算法与深度学习实战(7)——DEAP框架初体验
遗传算法与深度学习实战(10)——使用遗传算法重建图像
遗传算法与深度学习实战(14)——进化策略详解与实现

相关文章:

遗传算法与深度学习实战——使用进化策略实现EvoLisa

遗传算法与深度学习实战——使用进化策略实现EvoLisa 0. 前言1. 使用进化策略实现 EvoLisa2. 运行结果相关链接 0. 前言 我们已经学习了进化策略 (Evolutionary Strategies, ES) 的基本原理&#xff0c;并且尝试使用 ES 解决了函数逼近问题。函数逼近是一个很好的基准问题&…...

HttpServletRequest简介

HttpServletRequest是什么&#xff1f; HttpServletRequest是一个接口&#xff0c;其父接口是ServletRequest&#xff1b;HttpServletRequest是Tomcat将请求报文转换封装而来的对象&#xff0c;在Tomcat调用service方法时传入&#xff1b;HttpServletRequest代表客户端发来的请…...

c++开发之编译curl(安卓版本)

为了在 Android 上编译支持 OpenSSL 的 libcurl&#xff0c;你需要手动编译 libcurl 和 OpenSSL&#xff0c;并确保它们能够在 Android 的交叉编译环境中正常工作。以下是详细的步骤说明。 1. 安装必要工具 在编译之前&#xff0c;确保你已经安装了以下工具&#xff1a; And…...

QT+ESP8266+STM32项目构建三部曲三--QT从环境配置到源程序的解析

一、阿里云环境配置 大家在编写QT连接阿里云的程序之前&#xff0c;先按照下面这篇文章让消息可以在阿里云上顺利流转 QTESP8266STM32项目构建三部曲二--阿里云云端处理之云产品流转-CSDN博客文章浏览阅读485次&#xff0c;点赞7次&#xff0c;收藏4次。创建两个设备&#xff…...

Web APIs 5:Window对象(BOM)+本地存储

Web APIs 5&#xff08;BOM&#xff1a;Window对象本地存储&#xff09; 1.BOM(浏览器对象模型)&#xff08;后面几个对象都为BOM对象&#xff09; BOM对象包含&#xff1a;navigator、location、document(DOM对象)、history、screenBOM是一个全局对象&#xff0c;即JS中的顶…...

神经网络(四):UNet图像分割网络

文章目录 一、简介二、网络结构2.1编码器部分2.2解码器部分2.3完整代码 三、实战案例 论文链接&#xff1a;点击跳转 一、简介 UNet网络是一种用于图像分割的卷积神经网络&#xff0c;其特点是采用了U型网络结构&#xff0c;因此称为UNet。该网络具有编码器和解码器结构&#…...

Java 编码系列:注解处理器详解与面试题解析

引言 在上一篇文章中&#xff0c;我们详细探讨了 Java 注解的基本概念、自定义注解、元注解等技术。本文将继续深入探讨 Java 注解处理器&#xff08;Annotation Processor&#xff09;&#xff0c;介绍如何编写注解处理器&#xff0c;并结合大厂的最佳实践和面试题详细解析其…...

C语言 | Leetcode C语言题解之第441题排列硬币

题目&#xff1a; 题解&#xff1a; class Solution { public:int arrangeCoins(int n) {return (int) ((sqrt((long long) 8 * n 1) - 1) / 2);} };...

Linux noVNC远程桌面(xfce)部署

一、安装 VNC 服务器和桌面环境 Notebook实验 常用vnc服务 VNC (Virtual Network Computing) 是一种远程桌面协议&#xff0c;可以让你通过网络访问服务器的图形界面。 TurboVNC&#xff1a;专为图形密集型应用设计&#xff0c;尤其适合 3D 可视化和高分辨率图像的远程传输…...

【网络安全】身份认证

1. 身份认证 1.1 定义 身份认证&#xff08;Authentication&#xff09;是确认用户身份的过程&#xff0c;确保只有授权的用户才能访问系统或资源。它通常涉及验证用户提供的凭证&#xff0c;如密码、生物特征或其他识别标志。 1.2 重要性 身份认证是信息安全的第一道防线&…...

LeetCode - #124 二叉树中的最大路径和(Top 100)

文章目录 前言1. 描述2. 示例3. 答案关于我们前言 本题为 LeetCode 前 100 高频题 我们社区陆续会将顾毅(Netflix 增长黑客,《iOS 面试之道》作者,ACE 职业健身教练。)的 Swift 算法题题解整理为文字版以方便大家学习与阅读。 LeetCode 算法到目前我们已经更新到 123 期…...

Java:插入排序

目录 排序的概念 插入排序 直接插入排序 哈希排序 排序的概念 排序&#xff1a;所谓的排序&#xff0c;就是使一串记录&#xff0c;按照某个或某些关键字的大小&#xff0c;递增或递减的排列起来的操作。 稳定性&#xff1a;假定在待排序的记录序列中&#xff0c;存在多个…...

How FAR ARE WE FROM AGI?(ICLR AGI Workshop 2024)概览

关注B站可以观看更多实战教学视频&#xff1a;hallo128的个人空间 How FAR ARE WE FROM AGI?官网 How FAR ARE WE FROM AGI?&#xff08;ICLR AGI Workshop 2024&#xff09; 该研讨会将于2024年5月11日在奥地利维也纳以混合模式举行&#xff0c;作为 ICLR 2024年会议的一部…...

leetcode刷题day33|动态规划Part02(62.不同路径、63. 不同路径 II、 343.整数拆分、96.不同的二叉搜索树)

62.不同路径 机器人从(0 , 0) 位置出发&#xff0c;到(m - 1, n - 1)终点。 动规五部曲 1、确定dp数组&#xff08;dp table&#xff09;以及下标的含义 dp[i][j] &#xff1a;表示从&#xff08;0 &#xff0c;0&#xff09;出发&#xff0c;到(i, j) 有dp[i][j]条不同的路…...

基于Python大数据的B站热门视频的数据分析及可视化系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码 精品专栏&#xff1a;Java精选实战项目…...

matlab-批处理图像质量变化并形成折线图 (PSNR)

%修改路径就能用&#xff0c;图片分辨率要一致 %clc;clear all;close all;tic;%清理内存 file_pathE:\test\resources\image\;% 批量图像所在的文件夹下 file_save_pathE:\test\resources\SaveImage\;% 要存储的地址 img_path_listdir(strcat(file_path,*.jpg));% 获取批量bm…...

[Doc][Ros2]ros2中Qos(Quality of Service,服务质量)介绍

在 ROS 2 中,QoS(Quality of Service,服务质量)是用于控制节点之间消息传递的可靠性、历史存储和数据持久性等方面的机制。通过 QoS 设置,用户可以更细粒度地控制消息传递的行为,确保在不同网络环境或应用场景中满足特定的通信需求。 几个常用的包: QoSProfile: 含义…...

SpringBoot日志集成-LogBack

Log4J&#xff1a;最早的Java日志框架之一&#xff0c;由Apache基金会发起&#xff0c;提供灵活而强大的日志记录机制JDK自带的日志框架&#xff1a;java.util.logging.Logg&#xff0c;是JDK1.4之后提供的日志API&#xff0c;已淘汰logback&#xff1a; logback一个开源的日志…...

Google BigTable架构详解

文章目录 什么是BigTable?架构图一、整体架构二、数据存储与索引存储模型 三、数据拆分与存储四、元数据管理五、读写流程 其他内容概览负载平衡其他存储和数据库选项 什么是BigTable? Bigtable是Google开发的一个高性能、可扩展的分布式存储系统&#xff0c;用于管理大规模…...

【python】如何切换ipynb的kernel至指定conda环境

需求介绍 打开(若无新建环境) 环境 conda env list conda activate cvml conda install ipykernel python -m ipykernel install --name cvml 以上完成后&#xff0c;打开jupyter 创建一个python文件 在kernel——>change kernel——>python[conda env:cvml] 参考资料…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

Java 加密常用的各种算法及其选择

在数字化时代&#xff0c;数据安全至关重要&#xff0c;Java 作为广泛应用的编程语言&#xff0c;提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景&#xff0c;有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中&#xff0c;我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道&#xff0c;它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题&#xff0c;说是客户的导入文件模版想支持部分导入内容的下拉选&#xff0c;于是我就找了easyexcel官网寻找解决方案&#xff0c;并没有找到合适的方案&#xff0c;没办法只能自己动手并分享出来&#xff0c;针对Java生成Excel下拉菜单时因选项过多导…...