当前位置: 首页 > news >正文

数据结构:并查集

数据结构:并查集

    • 并查集
      • 原理
      • 实现
        • 框架
        • 初始化
        • 合并
        • 查询
        • 获取成员
        • 路径压缩
        • 其它
      • 总代码


并查集

在生活中,经常会出现分组问题。比如一个班级分为多个小组,打篮球分为两方等等。在同一个组中的所有成员,就构成一个集合。对这种一个群体分为多个集合的数据结构,称为并查集

其提供两个最核心的功能:

  • 合并:将两个集合合并成一个集合
  • 查询:查找两个元素是否属于一个集合

因此称为并查集。

实现一个并查集并不难,但是如果要实现一个高效的并查集,就需要一定的设计了。本博客讲解以C++实现的并查集,并且尽可能在时间与空间的利用上更加高效。

原理

谈到集合,在数据结构中如何维护一个集合?比如一个数组,一个set,一棵树等等。既然要探求一个最高效的存储方式,那么就要讨论如何最大化利用资源了。

如果使用一个数组来存储一个集合,那么每个集合都要开辟一个数组,在合并集合时,还需要发生数组的合并,此时又会有空间的开辟和销毁。

如果使用链式树存储集合,此时合并就会很方便:

在这里插入图片描述

红色与蓝色是两个不同的集合,合并集合时,只需要修改一个指针的指向即可。

但是链式结构也有问题,链式结构的数据是分散的,计算机每次加载节点都需要寻址,效率很低。有没有方法既可以保持树结构,又可以集中的存储所有数据?

如果你学习过,那么答案就呼之欲出了,其实就是使用一个数组形式的树

在这里插入图片描述

如图,每个节点存储自己的父节点的下标,根节点存储自己的下标

其可以转化为如下三个集合:

在这里插入图片描述

这是一种常见的并查集形式,但是还可以再优化。这种形式下根节点存储自己的下标,是不是可以把这块空间腾出来,存储该集合的元素个数?

在这里插入图片描述

如图,根节点存储的值变为负数,绝对值表示该集合的总元素个数。为什么根节点要变为负数?之前已经规定了:数组的元素存储自己父节点的下标,如果根节点的值为一个正整数,此时如何判断这是一个根节点还是普通节点,存储的值是集合总元素还是父节点下标?

因为数组下标没有负数,所以此时就可以通过正负数判断该节点是根节点还是普通节点:

  • 负数:根节点,存储该集合元素总个数
  • 正数:普通节点,存储父节点的下标

这是一个非常高效的存储结构,使用一个数组就表示了一个并查集,内含多个树结构。而多棵树在一起就构成了一个森林,其实并查集的本质就是一个森林

但是至此还有一个问题,这个并查集只能表示整数集合,不能表示其它的string等类型,所以还需要一个map维持映射关系,将其他元素映射为数组下标


实现

框架

为了提高可扩展性,把并查集定义为一个类模板,模板参数为并查集存储元素的类型。

template <typename T>
class UnionFindSet
{
private:vector<int> _ufs;map<T, int> _mp;
};

成员变量:

  • _ufs:并查集的本体,用于维护集合的关系,也就是刚刚设计的那个数组
  • _mp:一个映射关系,将存储的元素T映射到具体的数组下标int

初始化

初始化时并查集接收一个数组,里面是独立的元素,它们不构成任何集合关系。

随后要构建这些元素与下标的映射关系,即初始化_mp。另

最后,对于_ufs本体,全部初始化为-1

在这里插入图片描述

因为一开始所有元素自成一个集合,都是集合的根节点,而根节点存储的是集合元素的个数的负数。每个集合只有一个元素,所以节点值初始化为-1

构造函数:

UnionFindSet(vector<T>& source): _ufs(source.size(), -1)
{for (int i = 0; i < source.size(); i++)_mp[source[i]] = i;
}

参数接受一个数组source,内部包含多个T类型元素,在初始化列表种将_ufs的大小扩大到与source一致,所有元素初始化为-1

在函数体内部,完成对_mp的初始化,遍历source,存储(source[i], i)的映射关系。


合并

合并两个集合,就是将其中一个元素的根节点的父节点指针,指向另一个节点的根节点,如图:

在这里插入图片描述

上图展示了蓝色集合与绿色集合的合并操作,分为以下两步:

  1. 将蓝色集合根节点的值加上绿色集合根节点的值:-4-7
  2. 将绿色集合的根节点的值变为蓝色集合根节点的下标:-30

既然要操作集合的根节点,自然就要先找到集合的根节点,写一个函数用于获取集合根节点:

int findRoot(T x)
{if (_mp.count(x) == 0)throw runtime_error("value does not exist"); // 值不存在int root = _mp[x];while (_ufs[root] >= 0){root = _ufs[root];}return root;
}

首先通过_mp.count(x)判断该元素是否在并查集种,如果不在就抛出一个异常,表示值不存在。

随后通过一个循环,每次root = _ufs[root],其中_ufs[root]是父节点的下标,这样就可以让root往父节点走,直到走到根节点,此时_ufs[root]是一个负数,最后跳出循环返回根节点。

找到根节点后,就可以完成集合的合并操作了:

void unionSet(T x1, T x2)
{int root1 = findRoot(x1);int root2 = findRoot(x2);if (root1 == root2)return;_ufs[root1] += _ufs[root2];_ufs[root2] = root1;
}

首先通过findRoot找到两个集合的根节点,如果根节点相同,说明两个元素本来就处于一个集合种,直接返回。

随后_ufs[root1] += _ufs[root2];完成了元素的加和,此时root1是新根,_ufs[root1]存储的是两个集合的元素总和的负数。

最后_ufs[root2] = root1;,修改toor2父节点,完成集合的合并。

这里还有一个优化,两个集合有两种合并方式:

在这里插入图片描述

如图,可以将绿色集合合并到蓝色集合下,也可以将蓝色集合合并到绿色集合下。这两种方式都是合理的,但是哪一种更好?

在集合种查找元素时,最多搜索树的高度次,树高度越低,那么搜索效率就越高。所以常把集合元素多的作为根。上图中因为蓝色集合元素个数多,所以把绿色集合合并到蓝色集合更优,也就是左边的方式。这个优化称为按秩合并

代码优化:

void unionSet(T x1, T x2)
{int root1 = findRoot(x1);int root2 = findRoot(x2);if (root1 == root2)return;// 按秩合并if (_ufs[root1] < _ufs[root2]){_ufs[root1] += _ufs[root2];_ufs[root2] = root1;}else{_ufs[root2] += _ufs[root1];_ufs[root1] = root2;}
}

由于根节点存储的就是集合的元素个数,所以可以直接拿_ufs[root]来比较两个集合的大小。如果_ufs[root1] < _ufs[root2],因为根节点存储的是负数,所以_ufs[root1]的绝对值更大,要把root2合并到root1


查询

并查集的第二个核心操作是判断两个元素是否在同一个集合。这其实非常简单,只需要判断两个元素的根节点是否相同即可

bool inSet(T x1, T x2)
{return findRoot(x1) == findRoot(x2);
}

获取成员

该接口的作用是,输入一个元素,取同一集合中的其它所有元素。

刚刚讲解过,判度两个元素是否在同一个集合,只需要看根节点是否相同。所以此处只需要:

  1. 先获取输入的根节点root
  2. 遍历整个并查集,判度根节点是否与root相同
vector<T> getMembers(T x) 
{vector<T> members;int root = findRoot(x);for (const auto& pair : _mp){if (findRoot(pair.first) == root) members.push_back(pair.first);}return members;
}

以上代码返回一个vector<T>,里面是与x为同一集合的所有元素。

首先root = findRoot(x),获取x的根节点。随后通过for循环遍历_mpfindRoot(pair.first)获取元素根节点,再与root判等,如果相等说明在同一集合,此时尾插到members数组中。


路径压缩

当并查集使用久了,就会出现树高度太高的问题,但是并查集内部的树是多叉树,如下图两个集合:

在这里插入图片描述

这两个集合其实是同一个集合,但是很明显左边的树高度低,查询效率会高很多。所以并查集中常会做一个优化,将树高度尽可能降低,这个优化称为路径压缩

压缩路径被实现在查找操作findRoot中,因为每次查找的时候,都会从树底网上遍历到根节点,这是完成路径压缩的最好时机。

路径压缩的算法核心是:

每次向上查找父节点时,把自己提高到与父节点的同一层

如图:

在这里插入图片描述

当前从节点4开始向上查找,首先找到父节点1,随后将4提升到与1的同一层。也就是中间的情况。

此时问题变成了:从1开始查找根节点。找到父节点7,随后将1提升到与7的同一层,此时就变成了最后一种情况。

最后找到根节点为0,由于0已经是根节点了,不能把7提升到根节点。

实现:

int findRoot(T x)
{if (_mp.count(x) == 0)throw runtime_error("value does not exist"); // 值不存在int root = _mp[x];while (_ufs[root] >= 0 && _ufs[_ufs[root]] >= 0){_ufs[root] = _ufs[_ufs[root]]; // 路径压缩}if (_ufs[root] >= 0)root = _ufs[root];return root;
}

由于路径压缩要考虑爷爷节点是否存在,所以while内部有两个条件:_ufs[root] >= 0表示父节点存在,_ufs[_ufs[root]] >= 0表示爷爷节点存在。

只要父节点和爷爷节点都存在,那么就可以进行路径压缩,_ufs[root] = _ufs[_ufs[root]],其中_ufs[root] 是当前节点的值存储的是父节点的下标,_ufs[_ufs[root]]是爷爷节点的下标。这个赋值将爷爷节点的下标赋值给自己,此时就把爷爷节点变成了父节点,完成了向上提升。

最后while循环离开的时候,有可能是因为爷爷节点不存在,此时root是根节点的某一个孩子,所以还要root = _ufs[root]往上走一层。


其它

还有一些其它的小接口,都很简单

  • 当前并查集内部有多少个集合
size_t count()
{size_t size = 0;for (auto& num : _ufs){if (num < 0)size++;}return size;
}
  • 输入一个集合,获取该集合的元素个数
size_t size(T x)
{return abs(_ufs[findRoot(x)]);
}

想要知道集合元素个数,只需要找到根节点,然后返回绝对值即可。


总代码

  • UnionFindSet.hpp
#pragma once
#include <iostream>
#include <vector>
#include <map>
#include <stdexcept>using namespace std;template <typename T>
class UnionFindSet
{
public:UnionFindSet(vector<T>& source): _ufs(source.size(), -1){for (int i = 0; i < source.size(); i++)_mp[source[i]] = i;}int findRoot(T x){if (_mp.count(x) == 0)throw runtime_error("value does not exist"); // 值不存在int root = _mp[x];while (_ufs[root] >= 0 && _ufs[_ufs[root]] >= 0){_ufs[root] = _ufs[_ufs[root]]; // 压缩路径root = _ufs[root];}if (_ufs[root] >= 0)root = _ufs[root];return root;}void unionSet(T x1, T x2){int root1 = findRoot(x1);int root2 = findRoot(x2);if (root1 == root2)return;// 按秩合并if (_ufs[root1] < _ufs[root2]){_ufs[root1] += _ufs[root2];_ufs[root2] = root1;}else{_ufs[root2] += _ufs[root1];_ufs[root1] = root2;}}bool inSet(T x1, T x2){return findRoot(x1) == findRoot(x2);}size_t count(){size_t size = 0;for (auto& num : _ufs){if (num < 0)size++;}return size;}size_t size(T x){return abs(_ufs[findRoot(x)]);}vector<T> getMembers(T x) {vector<T> members;int root = findRoot(x);for (const auto& pair : _mp){if (findRoot(pair.first) == root) members.push_back(pair.first);}return members;}private:vector<int> _ufs;map<T, int> _mp;
};
  • test.cpp,测试代码
#include <iostream>
#include <string>
#include <vector>
#include "unionFindSet.hpp"using namespace std;int main()
{vector<string> stu = { "张三", "李四", "王五", "赵六", "翠花", "小龙", "小淘", "小明" };UnionFindSet<string> ufs(stu);cout << ufs.count() << endl;cout << ufs.inSet("张三", "翠花") << endl;ufs.unionSet("张三", "赵六");ufs.unionSet("王五", "小淘");ufs.unionSet("翠花", "小明");ufs.unionSet("翠花", "张三");cout << ufs.inSet("张三", "翠花") << endl;cout << ufs.count() << endl;cout << ufs.size("张三") << endl;auto members = ufs.getMembers("张三");for (auto& mem : members)cout << mem << "  ";cout << endl;return 0;
}

相关文章:

数据结构:并查集

数据结构&#xff1a;并查集 并查集原理实现框架初始化合并查询获取成员路径压缩其它 总代码 并查集 在生活中&#xff0c;经常会出现分组问题。比如一个班级分为多个小组&#xff0c;打篮球分为两方等等。在同一个组中的所有成员&#xff0c;就构成一个集合。对这种一个群体分…...

微信小程序实战教程:轻松实现列表批量选择功能

在许多场景下&#xff0c;用户需要对列表中的多项内容进行操作&#xff0c;如批量删除、批量下载等。为了满足这一需求&#xff0c;我们需要在微信小程序中实现列表批量选择功能。具体要求如下&#xff1a; 用户可以逐个选择列表项&#xff0c;也可通过全选按钮快速选择所有列表…...

企业微信:开启客户联系和配置

前言 客户联系是企业微信的一项非常实用且自定义化配置丰富的功能&#xff0c;使企业内的授权员工可以添加外部客户&#xff08;企业微信联系人和微信联系人&#xff09;进行工作沟通&#xff0c;并且还可以建立客户群&#xff0c;甚至发表内容到客户朋友圈&#xff01; 由于功…...

Python发送邮件教程:如何实现自动化发信?

Python发送邮件有哪些方法&#xff1f;如何利用python发送邮件&#xff1f; 无论是工作汇报、客户通知还是个人提醒&#xff0c;邮件都能快速传递信息。Python发送邮件的自动化功能就显得尤为重要。AokSend将详细介绍如何使用Python发送邮件&#xff0c;实现自动化发信&#x…...

一周热门|苏姿丰:芯片行业不能只盯着 GPU;Gartner:GenAI 即将越过期望膨胀期

大模型周报将从【企业动态】【技术前瞻】【政策法规】【专家观点】四部分&#xff0c;带你快速跟进大模型行业热门动态。 01 企业动态 Open AI 计划从非营利组织向营利组织转型 日前&#xff0c;路透社报道称&#xff0c;OpenAI 正在制定一项计划&#xff0c;将其核心业务重…...

Failed to load WebView provider: No WebView installed

1、问题 使用webview加载网页&#xff0c;在应用运行时&#xff0c;报了如下错误&#xff1a;android.webkit.WebViewFactory$MissingWebViewPackageException: Failed to load WebView provider: No WebView installed2、分析 通过查看项目的修改记录&#xff0c;确实安装了We…...

java日志框架之Log4j

文章目录 一、Log4j简介二、Log4j组件介绍1、Loggers (日志记录器)2、Appenders&#xff08;输出控制器&#xff09;3、Layout&#xff08;日志格式化器&#xff09; 三、Log4j快速入门四、Log4j自定义配置文件输出日志1、输出到控制台2、输出到文件3、输出到数据库 五、Log4j自…...

C++ bitset(位图)的模拟实现

文章目录 一、bitset接口总览二、bitset模拟实现1. 构造函数2. set、reset、flip、test3. size、count4. any、none、all5. 打印函数 三、完整代码 一、bitset接口总览 成员函数功能set设置指定位或所有位为1&#xff08;即设置为“已设置”状态&#xff09;reset清空指定位或…...

Llama 3.2:利用开放、可定制的模型实现边缘人工智能和视觉革命

在我们发布 Llama 3.1 模型群后的两个月内&#xff0c;包括 405B - 第一个开放的前沿级人工智能模型在内&#xff0c;它们所产生的影响令我们兴奋不已。 虽然这些模型非常强大&#xff0c;但我们也认识到&#xff0c;使用它们进行构建需要大量的计算资源和专业知识。 我们也听到…...

解决R语言bug ‘sh‘ is not recognized as an internal or external command

安装源码包‘httr2’ trying URL ‘https://cran.rstudio.com/src/contrib/httr2_1.0.5.tar.gz’ Content type ‘application/x-gzip’ length 230632 bytes (225 KB) downloaded 225 KB installing source package ‘httr2’ … ** package ‘httr2’ successfully unpacked…...

记一次Mac 匪夷所思终端常用网络命令恢复记录

一天莫名奇妙发现ping dig 等基础命令都无法正常使用。还好能浏览器能正常访问&#xff0c;&#xff0c;&#xff0c;&#xff0c; 赶紧拿baidu试试^-^ ; <<>> DiG 9.10.6 <<>> baidu.com ;; global options: cmd ;; connection timed out; no serve…...

2024最新!!Java后端面试题(4)看这一篇就够了!!!!

七、异常 throw 和 throws 的区别&#xff1f; throw用来显式地抛出一个异常&#xff0c;而throws则用于在方法声明中指明该方法可能抛出的异常。简单来说&#xff0c;throw是抛出异常的实际动作&#xff0c;throws是告知调用者这个方法可能会抛出哪些异常的声明。 final、f…...

springboot整合sentinel和对feign熔断降级

一、准备 docker安装好sentinel-dashboard&#xff08;sentinel控制台&#xff09;&#xff0c;参考docker安装好各个组件的命令启动sentinel-dashboard&#xff0c;我的虚拟机ip为192.168.200.131&#xff0c;sentinel-dashboard的端口为8858 二、整合sentinel的主要工作 在…...

遗传算法与深度学习实战——使用进化策略实现EvoLisa

遗传算法与深度学习实战——使用进化策略实现EvoLisa 0. 前言1. 使用进化策略实现 EvoLisa2. 运行结果相关链接 0. 前言 我们已经学习了进化策略 (Evolutionary Strategies, ES) 的基本原理&#xff0c;并且尝试使用 ES 解决了函数逼近问题。函数逼近是一个很好的基准问题&…...

HttpServletRequest简介

HttpServletRequest是什么&#xff1f; HttpServletRequest是一个接口&#xff0c;其父接口是ServletRequest&#xff1b;HttpServletRequest是Tomcat将请求报文转换封装而来的对象&#xff0c;在Tomcat调用service方法时传入&#xff1b;HttpServletRequest代表客户端发来的请…...

c++开发之编译curl(安卓版本)

为了在 Android 上编译支持 OpenSSL 的 libcurl&#xff0c;你需要手动编译 libcurl 和 OpenSSL&#xff0c;并确保它们能够在 Android 的交叉编译环境中正常工作。以下是详细的步骤说明。 1. 安装必要工具 在编译之前&#xff0c;确保你已经安装了以下工具&#xff1a; And…...

QT+ESP8266+STM32项目构建三部曲三--QT从环境配置到源程序的解析

一、阿里云环境配置 大家在编写QT连接阿里云的程序之前&#xff0c;先按照下面这篇文章让消息可以在阿里云上顺利流转 QTESP8266STM32项目构建三部曲二--阿里云云端处理之云产品流转-CSDN博客文章浏览阅读485次&#xff0c;点赞7次&#xff0c;收藏4次。创建两个设备&#xff…...

Web APIs 5:Window对象(BOM)+本地存储

Web APIs 5&#xff08;BOM&#xff1a;Window对象本地存储&#xff09; 1.BOM(浏览器对象模型)&#xff08;后面几个对象都为BOM对象&#xff09; BOM对象包含&#xff1a;navigator、location、document(DOM对象)、history、screenBOM是一个全局对象&#xff0c;即JS中的顶…...

神经网络(四):UNet图像分割网络

文章目录 一、简介二、网络结构2.1编码器部分2.2解码器部分2.3完整代码 三、实战案例 论文链接&#xff1a;点击跳转 一、简介 UNet网络是一种用于图像分割的卷积神经网络&#xff0c;其特点是采用了U型网络结构&#xff0c;因此称为UNet。该网络具有编码器和解码器结构&#…...

Java 编码系列:注解处理器详解与面试题解析

引言 在上一篇文章中&#xff0c;我们详细探讨了 Java 注解的基本概念、自定义注解、元注解等技术。本文将继续深入探讨 Java 注解处理器&#xff08;Annotation Processor&#xff09;&#xff0c;介绍如何编写注解处理器&#xff0c;并结合大厂的最佳实践和面试题详细解析其…...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

前端开发者常用网站

Can I use网站&#xff1a;一个查询网页技术兼容性的网站 一个查询网页技术兼容性的网站Can I use&#xff1a;Can I use... Support tables for HTML5, CSS3, etc (查询浏览器对HTML5的支持情况) 权威网站&#xff1a;MDN JavaScript权威网站&#xff1a;JavaScript | MDN...

pgsql:还原数据库后出现重复序列导致“more than one owned sequence found“报错问题的解决

问题&#xff1a; pgsql数据库通过备份数据库文件进行还原时&#xff0c;如果表中有自增序列&#xff0c;还原后可能会出现重复的序列&#xff0c;此时若向表中插入新行时会出现“more than one owned sequence found”的报错提示。 点击菜单“其它”-》“序列”&#xff0c;…...

如何把工业通信协议转换成http websocket

1.现状 工业通信协议多数工作在边缘设备上&#xff0c;比如&#xff1a;PLC、IOT盒子等。上层业务系统需要根据不同的工业协议做对应开发&#xff0c;当设备上用的是modbus从站时&#xff0c;采集设备数据需要开发modbus主站&#xff1b;当设备上用的是西门子PN协议时&#xf…...

ubuntu清理垃圾

windows和ubuntu 双系统&#xff0c;ubuntu 150GB&#xff0c;开发用&#xff0c;基本不装太多软件。但是磁盘基本用完。 1、查看home目录 sudo du -h -d 1 $HOME | grep -v K 上面的命令查看$HOME一级目录大小&#xff0c;发现 .cache 有26GB&#xff0c;.local 有几个GB&am…...

旋量理论:刚体运动的几何描述与机器人应用

旋量理论为描述刚体在三维空间中的运动提供了强大而优雅的数学框架。与传统的欧拉角或方向余弦矩阵相比&#xff0c;旋量理论通过螺旋运动的概念统一了旋转和平移&#xff0c;在机器人学、计算机图形学和多体动力学领域具有显著优势。这种描述不仅几何直观&#xff0c;而且计算…...

从0开始一篇文章学习Nginx

Nginx服务 HTTP介绍 ## HTTP协议是Hyper Text Transfer Protocol&#xff08;超文本传输协议&#xff09;的缩写,是用于从万维网&#xff08;WWW:World Wide Web &#xff09;服务器传输超文本到本地浏览器的传送协议。 ## HTTP工作在 TCP/IP协议体系中的TCP协议上&#…...

边缘计算设备全解析:边缘盒子在各大行业的落地应用场景

随着工业物联网、AI、5G的发展&#xff0c;数据量呈爆炸式增长。但你有没有想过&#xff0c;我们生成的数据&#xff0c;真的都要发回云端处理吗&#xff1f;其实不一定。特别是在一些对响应时间、网络带宽、数据隐私要求高的行业里&#xff0c;边缘计算开始“火”了起来&#…...

【中间件】Web服务、消息队列、缓存与微服务治理:Nginx、Kafka、Redis、Nacos 详解

Nginx 是什么&#xff1a;高性能的HTTP和反向代理Web服务器。怎么用&#xff1a;通过配置文件定义代理规则、负载均衡、静态资源服务等。为什么用&#xff1a;提升Web服务性能、高并发处理、负载均衡和反向代理。优缺点&#xff1a;轻量高效&#xff0c;但动态处理能力较弱&am…...