高并发内存池(六):补充内容
目录
有关大于256KB内存的申请和释放处理方法
处理大于256KB的内存申请
补充内容1
补充内容2
补充内容3
处理大于256KB的内存释放
新增内容1
新增内容2
测试函数
使用定长内存池替代new
释放对象时不传对象大小
补充内容1
补充内容2
补充内容3
补充内容4
测试函数
为哈希桶加锁
多线程环境下对比malloc测试
复杂问题的调试技巧
性能瓶颈分析
针对性能瓶颈使用基数树进行优化
基数树代码
有关大于256KB内存的申请和释放处理方法
内存申请和释放大于256KB也分为两种情况:
- 大于256KB但是小于128 * 8 * 1024KB
- 大于128 * 8 * 1024KB
内存申请大于256KB但小于128 * 8 * 1024KB:因为PageCache中存放的span所管理的最大页数为128,即span可分配的最大内存为128 * 8 * 1024 KB,所以当可以直接向PageCache申请一个合适的span(该span管理的页数为此次内存申请对齐后大小 / 页大小)
内存申请大于128 * 8 *1024 KB:PageCache中已经没有合适的span了,直接向堆上申请
处理大于256KB的内存申请
补充内容1
在RoundUp函数中新增用于处理大于256KB内存申请的内存对齐判断
(_RoundUp函数不变)
//用于内存对齐
static inline size_t RoundUp(size_t size)
{if (size <= 128){return _RoundUp(size, 8);}else if (size <= 1024){return _RoundUp(size, 16);}else if (size <= 8 * 1024){return _RoundUp(size, 128);}else if (size <= 64 * 1024){return _RoundUp(size, 1024);}else if (size <= 256 * 1024){return _RoundUp(size, 8 * 1024);}else{return _RoundUp(size, 1 << PAGE_SHIFT);//对齐数为当前规定的页的大小}
}
补充内容2
在NewSpan开始处中新增获取管理页数大于128的span的判断
//所需页数大于128PageCache无法分配,需要向堆申请
if (k > NPAGES - 1)
{void* ptr = SystemAlloc(k);//从堆获取一块内存Span* span = new Span;//申请一个span结点span->_PageId = (size_t)ptr >> PAGE_SHIFT;//新span中的页号为ptr指向的内存地址 / 页大小span->_n = k;//新span中的页数为n个_idSpanMap[span->_PageId] = span;//存放映射关系,即使该span不会被挂在PageCache上return span;
}
补充内容3
在ConcurrentAlloc函数新增size > MAX_BYTES的判断
//申请内存
static void* ConcurrentAlloc(size_t size)
{if (size > MAX_BYTES){size_t alignSize = SizeClass::RoundUp(size);//内存对齐size_t kpage = alignSize >> PAGE_SHIFT;//计算所需页数PageCache::GetInstance()->_pageMtx.lock();Span* span = PageCache::GetInstance()->NewSpan(kpage);//向PageCache申请管理kpage个页的span,若kpage > 128则需要经过补充内容2中的内容,否则还是按照原NewSpan执行void* ptr = (void*)(span->_PageId << PAGE_SHIFT);//通过页号计算地址PageCache::GetInstance()->_pageMtx.unlock();return ptr;//返回从PageCache分配给的内存空间的地址}else{...//获取TLS的那部分内容}
}
处理大于256KB的内存释放
新增内容1
在ReleaseSpanToPageCache开始处新增当归还的span的_n > 128的判断
//大于128页的span直接还给堆
if (span->_n > NPAGES - 1)
{void* ptr = (void*)(span->_PageId << PAGE_SHIFT);SystemFree(ptr);delete span;return;
}
新增内容2
在ConcurrentFree中新增用于size > MAX_BYTES的判断
//释放内存
static void ConcurrentFree(void* ptr,size_t size)
{if (size > MAX_BYTES){Span* span = PageCache::GetInstance()->MapObjectToSpan(ptr);//根据归还的内存地址获取要归还的spanPageCache::GetInstance()->_pageMtx.lock();PageCache::GetInstance()->ReleaseSpanToPageCache(span);//将要归还的span挂在PageCache上,或者返还给堆PageCache::GetInstance()->_pageMtx.unlock();}else{...//还是原来的那两行释放内容}
}
测试函数
//用于测试内存申请和释放大于256KB
void BigAlloc()
{//内存申请和释放大于256KB,但是小于128 * 8 * 1024KBvoid* p1 = ConcurrentAlloc(257 * 1024);ConcurrentFree(p1, 257 * 1024);//内存申请和释放大于128 * 8 * 1024KBvoid* p2 = ConcurrentAlloc(129 * 8 * 1024);ConcurrentFree(p2, 129 * 8 * 1024);
}
使用定长内存池替代new
基本概念:定长内存池在申请内存时是直接向堆申请的,没有使用malloc,效率得到提升,而目前我们在本项目中用到到了很多new的操作,其本质还是malloc,因此我们要用定长内存池中的New()和Delete()函数来代替new和delete,进行内存申请和释放,从而提高程序执行效率
准备工作:在某个涉及new或者delete的类中新增ObjectPool< ?>类型的私有成员变量,下面以PageCache为例
class PageCache
{
public:...
private:...ObjectPool<Span> _spanPool;//<>中的类型根据需要进行更改...
};
替换方式:将PageCache.cpp中所有使用new的地方都换成_spanPool.New(),将所有使用delet的位置都换为_spanPool.Delete( ? )(?表示要删除的对象的名称可能是span也可能是kspan之类的)
//Span* kSpan = new Span;
Span* kSpan = _spanPool.New();//delete span;
_spanPool.Delete(span);
易忽略位置
1、ConcurrentAlloc.h中的new ThreadCache
//pTLSThreadCache = new ThreadCache;
static ObjectPool<ThreadCache> tcPool;//static修饰保证只在当前文件中可以被访问
pTLSThreadCache = tcPool.New();
!!!重点!!!
注意事项:pTLSThreadCache是每个线程独有的一个对象,但是为其申请空间的tcPool不是,它是一个静态的对象,整个进程中独一份,被当前进程中的所有线程共享,多线程情况下会出现线程安全问题,所以这里也需要加锁(不加的话有小概率不崩溃,即轮到t2执行时_memory不为空)
解决办法:在ObjPool类中新增公有成员变量_poolMtx,同时在pTLSThreadCache = tcPool.New()的两侧加锁
tcPool._poolMtx.lock();
pTLSThreadCache = tcPool.New();
tcPool._poolMtx.unlock();
补充:SpanList类中为了创建头结点的new Span不用替换,因为头节点通常在
SpanList
对象的整个生命周期内存在,并且不会像其他 Span 对象那样频繁创建和销毁。使用_spanPool
进行内存管理主要是为了优化频繁分配和回收的对象,而头节点的长生命周期使得使用_spanPool
的优势不明显
释放对象时不传对象大小
基本概念:在之前释放内存时我们不仅要传入释放的内存的地址,还要存放要释放的内存的大小,过于麻烦,所以最好只传递一个指针即可释放内存
ConcurrentFree(p1, 6);
补充内容1
在span类中新增一个表示当前span中管理的内存的大小的成员变量_objSize
struct Span
{...size_t _objSize = 0;//当前span管理的内存大小
};
补充内容2
在ConcurrentFree中,将MapObjectToSpan的位置进行移动,并获取当前span的_objSize
//释放内存
static void ConcurrentFree(void* ptr)
{Span* span = PageCache::GetInstance()->MapObjectToSpan(ptr);size_t size = span->_objSize;if (size > MAX_BYTES){...}else{...}
}
补充内容3
在ConcurrentAlloc中从堆上获取到一个span后,补充该span的_objSize
//申请内存
static void* ConcurrentAlloc(size_t size)
{if (size > MAX_BYTES){...Span* span = PageCache::GetInstance()->NewSpan(kpage);span->_objSize = size;...}else{...}
}
补充内容4
CentralCache中的NewSpan后,填充该span的_objSize
//为指定位置桶下的SpanList申请一个非空的span
Span* CentralCache::GetOneSpan(SpanList& list, size_t size)
{...Span* span = PageCache::GetInstance()->NewSpan(SizeClass::NumMovePage(size));//从PageCache中获取一个新的非空spanspan->_isUse = true;span->_objSize = size;....
}
注意事项:记得最后把ConcurrentFree的第二个形参删除
测试函数
void WithNoSize()
{void* p1 = ConcurrentAlloc(257 * 1024);ConcurrentFree(p1);void* p2 = ConcurrentAlloc(129 * 8 * 1024);ConcurrentFree(p2);
}
为哈希桶加锁
基本概念:C++的标准模板库(STL)提供的容器在多线程环境下并不保证线程安全,因此在多个线程同时访问或修改同一个容器时,通常需要自行添加同步机制(如互斥锁)以确保数据的一致性和避免竞态条件,因此当我们尝试在本项目中使用哈希桶记录span与页号的映射关系时,需要及时的加锁
加锁位置:参与读写哈希桶的函数有NewSpan、MapObjectToSpan和ReleaseSpanToPageCache,它们都在PageCache.cpp中,其中在CentralCache.cpp中使用这三个函数时,只有MapObjectToSpan没有添加锁,这就可能导致多个线程在CentralCache中同时访问MapObjectToSpan函数并同时访问哈希桶造成线程安全问题,所以要在MapObjectToSpan函数执行到访问哈希桶的操作前加锁
//地址->页号->span的映射
Span* PageCache::MapObjectToSpan(void* obj)
{size_t id = ((size_t)obj >> PAGE_SHIFT);std::unique_lock<std::mutex> lock(_pageMtx);auto ret = _idSpanMap.find(id);if (ret != _idSpanMap.end()){return ret->second;}else{assert(false);return nullptr;}
}
关于std::unique_lock<std::mutex> lock(_pageMtx):是一种通过RAII方式管理互斥锁的机制,确保在多线程环境中对共享资源的安全访问。它自动处理锁的获取和释放,减少了手动管理锁可能带来的错误风险,同时提供了较高的灵活性,适用于各种复杂的同步场景
多线程环境下对比malloc测试
新增Benchmark.cpp源文件
#include<cstdio>
#include<iostream>
#include<vector>
#include<thread>
#include<mutex>
#include"ConcurrentAlloc.h"
using namespace std;void BenchmarkMalloc(size_t ntimes, size_t nworks, size_t rounds)//ntime一轮申请和释放内存的次数,round是跑多少轮,nworks是线程数
{std::vector<std::thread> vthread(nworks);std::atomic<size_t> malloc_costtime = 0;std::atomic<size_t> free_costtime = 0;for (size_t k = 0; k < nworks; ++k){vthread[k] = std::thread([&, k]() {std::vector<void*> v;v.reserve(ntimes);for (size_t j = 0; j < rounds; ++j){size_t begin1 = clock();for (size_t i = 0; i < ntimes; i++){//v.push_back(malloc(16));v.push_back(malloc((16 + i) % 8192 + 1));}size_t end1 = clock();size_t begin2 = clock();for (size_t i = 0; i < ntimes; i++){free(v[i]);}size_t end2 = clock();v.clear();malloc_costtime += (end1 - begin1);free_costtime += (end2 - begin2);}});}for (auto& t : vthread){t.join();}printf("%u个线程并发执行%u轮次,每轮次malloc %u次: 花费:%u ms\n",nworks, rounds, ntimes, malloc_costtime.load());printf("%u个线程并发执行%u轮次,每轮次free %u次: 花费:%u ms\n",nworks, rounds, ntimes, free_costtime.load());printf("%u个线程并发malloc&free %u次,总计花费:%u ms\n",nworks, nworks * rounds * ntimes, malloc_costtime.load() + free_costtime.load());
}// 单轮次申请释放次数 线程数 轮次
void BenchmarkConcurrentMalloc(size_t ntimes, size_t nworks, size_t rounds)
{std::vector<std::thread> vthread(nworks);std::atomic<size_t> malloc_costtime = 0;std::atomic<size_t> free_costtime = 0;for (size_t k = 0; k < nworks; ++k){vthread[k] = std::thread([&]() {std::vector<void*> v;v.reserve(ntimes);for (size_t j = 0; j < rounds; ++j){size_t begin1 = clock();for (size_t i = 0; i < ntimes; i++){//v.push_back(ConcurrentAlloc(16));v.push_back(ConcurrentAlloc((16 + i) % 8192 + 1));}size_t end1 = clock();size_t begin2 = clock();for (size_t i = 0; i < ntimes; i++){ConcurrentFree(v[i]);}size_t end2 = clock();v.clear();malloc_costtime += (end1 - begin1);free_costtime += (end2 - begin2);}});}for (auto& t : vthread){t.join();}printf("%u个线程并发执行%u轮次,每轮次concurrent alloc %u次: 花费:%u ms\n",nworks, rounds, ntimes, malloc_costtime.load());printf("%u个线程并发执行%u轮次,每轮次concurrent dealloc %u次: 花费:%u ms\n",nworks, rounds, ntimes, free_costtime.load());printf("%u个线程并发concurrent alloc&dealloc %u次,总计花费:%u ms\n",nworks, nworks * rounds * ntimes, malloc_costtime.load() + free_costtime.load());
}
int main()
{size_t n = 10000;cout << "==========================================================" << endl;BenchmarkConcurrentMalloc(n, 10, 10);cout << endl << endl;BenchmarkMalloc(n, 10, 10);cout << "==========================================================" << endl;return 0;
}
性能瓶颈分析
针对性能瓶颈使用基数树进行优化
基数树代码
~over~
相关文章:

高并发内存池(六):补充内容
目录 有关大于256KB内存的申请和释放处理方法 处理大于256KB的内存申请 补充内容1 补充内容2 补充内容3 处理大于256KB的内存释放 新增内容1 新增内容2 测试函数 使用定长内存池替代new 释放对象时不传对象大小 补充内容1 补充内容2 补充内容3 补充内容4 测试…...
高性能存储 SIG 月度动态:优化 fuse 提升 AI 存储接入能力,erofs 工具发布新版本
本次月报综合了 SIG 在 7、8 两个月的工作进展,包含多项新特性、优化、Bugfix 等。 SIG 整体进展 fuse 支持 failover,并优化 background 读写公平性,提升 AI 存储接入场景的能力。 erofs page cache 共享特性已发到上游社区,re…...

2024 年最新 Protobuf 结构化数据序列化和反序列化详细教程
Protobuf 序列化概述 Protobuf(Protocol Buffers)是由Google开发的一种语言中立、平台中立、可扩展的序列化结构数据的方法。它用于在不同系统之间高效地交换数据。Protobuf使用定义文件(.proto)来描述数据结构,并通过…...

【小程序】微信小程序课程 -4 项目实战
目录 1、 效果图 2、创建项目 2.1 创建小程序端 2.1.1 先创建纯净项目 2.1.2 删除components 2.1.4 删除app.json红色部分 2.1.5 删除index.json红色部分 2.1.6 删除index.wxss全部内容 2.1.7 删除index.wxml全部内容 2.1.8 app.json创建4个页面 2.1.9 app.json添加…...

【期刊】论文索引库-SCI\SSCI\IE\南大核心\北大核心\CSCD等
外文期刊检索 SCI SCI即《科学引文索引》(Science Citation Index),是由美国科学信息研究所(Institute for Scientific Information)创建于1961年,收录文献的作者、题目、源期刊、摘要、关键词,不仅可以从文献引证的角度评估文章的学术价值,还可以迅速方便地组建研究课…...

开源链动 2+1 模式 S2B2C 商城小程序:社交电商团队为王的新引擎
摘要:本文深入探讨在社交电商领域中,团队的重要性以及如何借助开源链动 21 模式 S2B2C 商城小程序,打造具有强大竞争力的团队,实现个人价值与影响力的放大,创造被动收入,迈向财富自由之路,同时为…...

使用Fiddler Classic抓包工具批量下载音频资料
1. 通过F12开发者工具,下载音频文件 浏览器打开音频列表->F12快捷键->网络->媒体,播放一个音频文件,右边媒体下生成一个音频文件,右击“在新标签页中打开”,可以下载这个音频文件。 2.通过Fiddler Classic抓…...

QT开发:基于Qt实现的交通信号灯模拟器:实现一个带有倒计时功能的图形界面应用
介绍 本文将介绍如何使用Qt框架实现一个简单的交通信号灯控制程序。本程序包括一个图形界面,显示红、黄、绿三色信号灯,并通过定时器控制信号灯的切换。同时,我们还将实现一个带有按钮的界面,用于展示信号灯的状态。 1. 安装Qt开…...
【编程基础知识】网络I/O模型详解:从阻塞到异步
引言 网络I/O模型是网络编程的核心,它们决定了应用程序如何进行读写操作以与网络进行数据交换。了解不同的网络I/O模型对于设计高效、可扩展的网络应用程序至关重要。 一、阻塞I/O(Blocking I/O) 1. 定义 阻塞调用:当应用程序…...

yolo自动化项目实例解析(六)自建UI(主窗口、预览窗口)
前面我们大致把各个代码块梳理出来了,但是还是不知道从那块开始,我们这里主要先通过ui页面的元素去推理整个执行过程,我们首先需要知道ui功能里面有那些组件 qt设计师基础控件 Qt Designer 是一个图形界面设计工具,用于创建 Qt 应…...
Unity优质教程分类汇总 【持续更新中】
以下收录的均为作者自己看过的觉得比较好的教程 基础 Unity入门: https://www.bilibili.com/video/BV1HX4y1V71E?p13 生命周期 https://docs.unity.cn/cn/2022.3/uploads/Main/monobehaviour_flowchart.svg https://zhuanlan.zhihu.com/p/551294000 编程技巧…...
真正掌握left join on 和 where 的差别
总结 用 where 是先连接然后再筛选用 on 是先筛选再连接数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户。在使用left jion时,on和where条件的区别如下: on条件是在生成临时表…...

神经网络在多分类问题中的应用
作者简介:热爱数据分析,学习Python、Stata、SPSS等统计语言的小高同学~个人主页:小高要坚强的博客当前专栏:Python之机器学习本文内容:神经网络在多分类问题中的应用作者“三要”格言:要坚强、要努力、要学习 目录 1. 引言 2.数据构造 3.划分数据集 4.神经网络实现多…...

nginx的安装和使用
源码安装 1.环境准备:卸载其他方式安装的web应用,防止端口冲突 2.下载nginx源码包 wget https://nginx.org/download/nginx-1.20.2.tar.gz 3.源码编译安装 yum install -y gcc pcre-devel zlib-devel #安装依赖包 useradd -M -s /sbin/nologin ngi…...
js采用覆盖键、覆盖鼠标滑动事件实现禁止网页通过 ctrl + +/- 和 ctrl + 滚轮 对页面进行缩放
一、兼容电脑端的禁止通过 ctrl /- 和 ctrl 滚轮 对页面进行缩放 const keyCodeMap {// 91: true, // command61: true,107: true, // 数字键盘 109: true, // 数字键盘 -173: true, // 火狐 - 号187: true, // 189: true, // -};二、覆盖ctrl||command ‘’/‘-’ // 覆…...

某客户Oracle RAC无法启动故障快速解决
某日,9:50左右接到好友协助需求,某个客户Oracle RAC无法启动,并发过来一个报错截图,如下: 和客户维护人员对接后,远程登录服务端进行故障分析。 查看hosts信息,首先进行心跳测试,测…...

【计算机网络 - 基础问题】每日 3 题(二十八)
✍个人博客:Pandaconda-CSDN博客 📣专栏地址:http://t.csdnimg.cn/fYaBd 📚专栏简介:在这个专栏中,我将会分享 C 面试中常见的面试题给大家~ ❤️如果有收获的话,欢迎点赞👍收藏&…...

探索甘肃非遗:Spring Boot网站开发案例
1 绪论 1.1 研究背景 当前社会各行业领域竞争压力非常大,随着当前时代的信息化,科学化发展,让社会各行业领域都争相使用新的信息技术,对行业内的各种相关数据进行科学化,规范化管理。这样的大环境让那些止步不前&#…...

产品管理- 互联网产品(6):产品测试
可用性测试 招募有代表性用户作为测试代表参与者,评估某产品符合特定可用性及符合程度。以具有代表性的用户为测试样本。 测试中多关注用户表情与动作。多鼓励与测试的用户更多的操作以用户角度发现问题。同时要做好询问工作,耐心聆听用户的意见&#x…...

奖金高达 110 万元,Spatial Joy 2024 全球 AR 应用开发大赛启动
今年是AR应用开发大赛第三届,恰逢Rokid成立十周年,我们推出全新的大赛品牌“Spatial Joy”,引领开发者享受开发乐趣,为其打造充满挑战和惊喜的开发之旅,逐渐成为空间计算时代全球最大AR应用开发大赛。回顾大赛发展&…...

【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...

QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...

网络编程(UDP编程)
思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...
JS手写代码篇----使用Promise封装AJAX请求
15、使用Promise封装AJAX请求 promise就有reject和resolve了,就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...

Chrome 浏览器前端与客户端双向通信实战
Chrome 前端(即页面 JS / Web UI)与客户端(C 后端)的交互机制,是 Chromium 架构中非常核心的一环。下面我将按常见场景,从通道、流程、技术栈几个角度做一套完整的分析,特别适合你这种在分析和改…...

ubuntu系统文件误删(/lib/x86_64-linux-gnu/libc.so.6)修复方案 [成功解决]
报错信息:libc.so.6: cannot open shared object file: No such file or directory: #ls, ln, sudo...命令都不能用 error while loading shared libraries: libc.so.6: cannot open shared object file: No such file or directory重启后报错信息&…...
LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)
在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...