当前位置: 首页 > news >正文

HalconDotNet实现OCR详解

文章目录

  • 一、基于字符分割的 OCR
  • 二、基于模板匹配的 OCR
  • 三、基于深度学习的 OCR
  • 四、基于特征提取的 OCR
  • 五、基于区域建议的 OCR


一、基于字符分割的 OCR

  字符分割是 OCR 中的一个重要步骤。首先,对包含文本的图像进行预处理,如去噪、二值化等操作,以提高图像质量。然后,根据字符的特征,如连通区域、轮廓等,将图像中的字符分割出来。可以使用投影法、连通区域分析等方法进行字符分割。对于粘连的字符,可能需要进行特殊处理,如形态学操作或基于笔画宽度的分割方法。分割后的字符可以单独进行识别,提高识别的准确性。
C# 示例代码:

using HalconDotNet;class CharacterSegmentationOCR
{public void PerformOCR(){// 读取图像HObject image = new HObject();HOperatorSet.ReadImage(out image, "text_image.jpg");// 预处理:二值化HObject binaryImage;HOperatorSet.Threshold(image, out binaryImage, 128, 255);// 连通区域分析进行字符分割HObject connectedRegions;HOperatorSet.Connection(binaryImage, out connectedRegions);// 对每个连通区域进行单独处理HTuple regionCount;HOperatorSet.CountObj(connectedRegions, out regionCount);for (int i = 1; i <= regionCount; i++){HObject singleRegion;HOperatorSet.SelectObj(connectedRegions, out singleRegion, i);// 对单个字符区域进行识别,可以使用 Halcon 的 OCR 引擎HTuple recognizedText;using (new HOperatorSet()){HOperatorSet.ReadOcrClassMlp("ocr_model_file.omc", out recognizedText);HOperatorSet.DoOcrMultiClassMlp(singleRegion, recognizedText, out _, out _, out _, out _, out _, out _);}Console.WriteLine($"Recognized character: {recognizedText}");singleRegion.Dispose();}// 释放资源image.Dispose();binaryImage.Dispose();connectedRegions.Dispose();}
}

二、基于模板匹配的 OCR

  模板匹配 OCR 方法首先创建一系列不同字符的模板图像。对于待识别的图像,将其与每个模板进行比较,计算相似度。相似度可以通过多种方式计算,如归一化互相关等。根据相似度最高的模板确定对应的字符。这种方法对于字体较为固定、图像质量较好的情况效果较好。但需要预先创建大量的模板,并且对于字体变化、变形等情况可能不够鲁棒。
C# 示例代码:

using HalconDotNet;class TemplateMatchingOCR
{public void PerformOCR(){// 读取待识别图像HObject image = new HObject();HOperatorSet.ReadImage(out image, "text_image.jpg");// 加载字符模板HObject charTemplates = new HObject();for (char c = 'A'; c <= 'Z'; c++){HObject template = new HObject();HOperatorSet.ReadImage(out template, $"template_{c}.jpg");charTemplates = charTemplates.ConcatObj(template);template.Dispose();}// 进行模板匹配HTuple recognizedCharacters = new HTuple();HTuple scores = new HTuple();HOperatorSet.FindTemplate(image, charTemplates, -0.39, 6.28, 0.5, 1, 0.5, out _, out scores);for (int i = 0; i < scores.Length; i++){if (scores[i] > 0.8){recognizedCharacters = recognizedCharacters.ConcatObj((HTuple)charTemplates[i]);}}Console.WriteLine($"Recognized text: {recognizedCharacters}");// 释放资源image.Dispose();charTemplates.Dispose();}
}

三、基于深度学习的 OCR

  深度学习在 OCR 中取得了显著的成果。通过使用深度神经网络,如卷积神经网络(CNN)和循环神经网络(RNN)的组合,可以自动学习字符的特征,无需手动设计特征提取器。首先,收集大量的标注文本图像数据集,对神经网络进行训练。训练过程中,网络不断调整权重和参数,以最小化预测结果与真实标签之间的误差。在识别阶段,将待识别图像输入训练好的网络,网络输出预测的字符序列。深度学习方法对于复杂背景、字体变化、变形等情况具有较好的鲁棒性。
C# 示例代码:

using HalconDotNet;
using Halcon.OCR;class DeepLearningOCR
{public void PerformOCR(){// 读取图像HObject image = new HObject();HOperatorSet.ReadImage(out image, "text_image.jpg");// 创建 OCR 引擎HOcrEngine ocrEngine = new HOcrEngine();ocrEngine.InitOcrEngine("deep_learning_model_file.omc");// 进行 OCR 识别HTuple recognizedText;ocrEngine.ApplyOcr(image, out recognizedText);Console.WriteLine($"Recognized text: {recognizedText}");// 释放资源image.Dispose();ocrEngine.Dispose();}
}

四、基于特征提取的 OCR

  特征提取是 OCR 中的关键步骤之一。通过提取字符的特征,可以减少数据维度,提高识别的效率和准确性。常见的特征包括几何特征(如字符的高度、宽度、面积等)、统计特征(如灰度直方图、矩特征等)和结构特征(如字符的笔画结构、轮廓特征等)。对于不同的字体和图像质量,可以选择不同的特征组合。然后,使用分类器对提取的特征进行分类,确定字符的类别。
C# 示例代码:

using HalconDotNet;class FeatureExtractionOCR
{public void PerformOCR(){// 读取图像HObject image = new HObject();HOperatorSet.ReadImage(out image, "text_image.jpg");// 预处理:二值化HObject binaryImage;HOperatorSet.Threshold(image, out binaryImage, 128, 255);// 连通区域分析HObject connectedRegions;HOperatorSet.Connection(binaryImage, out connectedRegions);// 提取特征HTuple features = new HTuple();HTuple regionCount;HOperatorSet.CountObj(connectedRegions, out regionCount);for (int i = 1; i <= regionCount; i++){HObject singleRegion;HOperatorSet.SelectObj(connectedRegions, out singleRegion, i);// 提取几何特征和统计特征HTuple area, width, height;HOperatorSet.AreaCenter(singleRegion, out area, out _, out _);HOperatorSet.RegionFeatures(singleRegion, "width", out width);HOperatorSet.RegionFeatures(singleRegion, "height", out height);features = features.ConcatObj(area.ConcatObj(width.ConcatObj(height)));singleRegion.Dispose();}// 使用分类器进行识别HTuple recognizedCharacters;// 假设已经训练好分类器// 使用分类器对特征进行分类,得到识别结果recognizedCharacters = Classifier.Predict(features);Console.WriteLine($"Recognized text: {recognizedCharacters}");// 释放资源image.Dispose();binaryImage.Dispose();connectedRegions.Dispose();}
}

五、基于区域建议的 OCR

  区域建议方法首先在图像中生成可能包含字符的区域建议。可以使用基于深度学习的目标检测算法,如 Faster R-CNN 等,来生成区域建议。然后,对每个区域建议进行字符识别。这种方法可以有效地处理复杂背景下的文本识别问题,并且可以同时识别多个字符区域。通过对区域建议进行筛选和合并,可以提高识别的准确性和效率。
C# 示例代码:

using HalconDotNet;
using Halcon.OCR;class RegionProposalOCR
{public void PerformOCR(){// 读取图像HObject image = new HObject();HOperatorSet.ReadImage(out image, "text_image.jpg");// 创建 OCR 引擎HOcrEngine ocrEngine = new HOcrEngine();ocrEngine.InitOcrEngine("ocr_model_file.omc");// 使用区域建议算法生成可能的字符区域HObject regionProposals;// 假设已经有区域建议算法生成的区域regionProposals = GenerateRegionProposals(image);// 对每个区域进行 OCR 识别HTuple recognizedText = new HTuple();HTuple regionCount;HOperatorSet.CountObj(regionProposals, out regionCount);for (int i = 1; i <= regionCount; i++){HObject singleRegion;HOperatorSet.SelectObj(regionProposals, out singleRegion, i);HTuple tempRecognizedText;ocrEngine.ApplyOcr(singleRegion, out tempRecognizedText);recognizedText = recognizedText.ConcatObj(tempRecognizedText);singleRegion.Dispose();}Console.WriteLine($"Recognized text: {recognizedText}");// 释放资源image.Dispose();regionProposals.Dispose();ocrEngine.Dispose();}private HObject GenerateRegionProposals(HObject image){// 这里假设使用一个虚构的区域建议算法生成区域HObject dummyRegions = new HObject();// 根据具体需求生成区域建议并返回return dummyRegions;}
}

相关文章:

HalconDotNet实现OCR详解

文章目录 一、基于字符分割的 OCR二、基于模板匹配的 OCR三、基于深度学习的 OCR四、基于特征提取的 OCR五、基于区域建议的 OCR 一、基于字符分割的 OCR 字符分割是 OCR 中的一个重要步骤。首先&#xff0c;对包含文本的图像进行预处理&#xff0c;如去噪、二值化等操作&#…...

手搓一个Agent#Datawhale 组队学习Task3

书接上回&#xff0c;首先回顾一下Task2的一些补充&#xff1a; Task2主要任务是从零预训练一个tiny-llama模型&#xff0c;熟悉一下Llama的模型架构和流程。然后测试一下模型的效果。总的来说&#xff0c;因为某些未知的原因&#xff0c;loss一直没有降下去&#xff0c;导致最…...

基于SpringBoot+Vue+MySQL的在线酷听音乐系统

系统展示 用户前台界面 管理员后台界面 系统背景 随着互联网技术的飞速发展&#xff0c;网络已成为人们日常生活中不可或缺的一部分。在线音乐服务因其便捷性和丰富性&#xff0c;逐渐成为用户获取音乐内容的主要渠道。然而&#xff0c;传统的音乐播放平台往往存在歌曲资源有限…...

大数据实时数仓Hologres(一):Hologres 简单介绍

文章目录 Hologres 简单介绍 一、什么是实时数仓 Hologres 二、产品优势 1、专注实时场景 2、亚秒级交互式分析 3、统一数据服务出口 4、开放生态 5、MaxCompute查询加速 6、计算存储分离架构 三、应用场景 搭建实时数仓 四、产品架构 1、Shared Disk/Storage &am…...

【鸿蒙HarmonyOS NEXT】数据存储之分布式键值数据库

【鸿蒙HarmonyOS NEXT】数据存储之分布式键值数据库 一、环境说明二、分布式键值数据库介绍三、示例代码加以说明四、小结 一、环境说明 DevEco Studio 版本&#xff1a; API版本&#xff1a;以12为主 二、分布式键值数据库介绍 KVStore简介&#xff1a; 分布式键值数据库…...

基于springboot+小程序的儿童预防接种预约管理系统(疫苗1)(源码+sql脚本+视频导入教程+文档)

&#x1f449;文末查看项目功能视频演示获取源码sql脚本视频导入教程视频 1、项目介绍 本儿童预防接种预约微信小程序可以实现管理员和用户。 1、管理员功能有个人中心&#xff0c;用户管理&#xff0c;儿童信息管理&#xff0c;疫苗信息管理&#xff0c;儿童接种管理&#x…...

计算物理精解【8】-计算原理精解【5】

文章目录 logistic模型多元回归分析多元回归分析概览1. 多元回归的概念与重要性2. 多元回归在实际应用中的例子3. 多元回归在预测和解释数据中的优势和局限性4. 多元回归的优缺点及改进建议 多元线性回归分析详解一、原理二、性质三、计算四、例子与例题五、应用场景六、优缺点…...

【Linux】 tcp | 解除服务器对tcp连接的限制 | 物联网项目配置

一、修改tcp连接限制 1、编辑 vi /etc/sysctl.conf 2、内容 net.ipv4.tcp_keepalive_intvl 75 net.ipv4.tcp_keepalive_probes 9 net.ipv4.tcp_keepalive_time 7200 net.ipv4.ip_local_port_range 1024 65535 net.ipv4.ip_conntrack_max 20000 net.ipv4.tcp_max_tw_bucket…...

如何隐藏Windows10「安全删除硬件」里的USB无线网卡

本方法参照了原文《如何隐藏Windows10「安全删除硬件」里的USB无线网卡》里面的方法&#xff0c;但是文章中的描述我的实际情况不太一样&#xff0c;于是我针对自己的实际情况进行了调整&#xff0c;经过测试可以成功隐藏Windows10「安全删除硬件」里的USB无线网卡。 先说一下…...

【QT Quick】基础语法:导入外部JS文件及调试

在 QML 中&#xff0c;可以使用 JavaScript 来实现业务逻辑的灵活性和简化开发。接下来我们会学习如何导入 JavaScript 文件&#xff0c;并在 QML 中使用它&#xff0c;同时也会介绍如何调试这些 JavaScript 代码。 导入 JavaScript 文件 在 QML 中导入 JavaScript 文件的方式…...

【质优价廉】GAP9 AI算力处理器赋能智能可听耳机,超低功耗畅享未来音频体验!

当今世界&#xff0c;智能可听设备已经成为了流行趋势。随后耳机市场的不断成长起来&#xff0c;消费者又对AI-ANC&#xff0c;AI-ENC&#xff08;环境噪音消除&#xff09;降噪的需求逐年增加&#xff0c;但是&#xff0c;用户对于产品体验的需求也从简单的需求&#xff0c;升…...

用Flutter几年了,Flutter每个版本有什么区别?

用Flutter几年了&#xff0c;你知道Flutter每个版本有什么区别吗&#xff1f;不管是学习还是面试我们可能都需要了解这个信息。 Flutter 每个版本的用法基本都是一样的&#xff0c;每隔几天或者几周就会更新一个版本&#xff0c; 2018 年 12 月 5 日发布了1.x 版本&#…...

解决Qt每次修改代码后首次运行崩溃,后几次不崩溃问题

在使用unique_ptr声明成员变量后&#xff0c;我习惯性地在初始化构造列表中进行如下构造&#xff1a; 注意看&#xff0c;我将m_menuBtnGroup的父类指定为ui->center_menu_widget&#xff0c;这便是导致崩溃的根本原因&#xff0c;解决办法便是先用this初始化&#xff0c;后…...

语言的变量交换

不用第三个变量交换两个变量在面试题或者笔试题中无数次被提到&#xff0c;事实上&#xff0c;有些答案是理论性的&#xff0c;不是准确的。以整型为例&#xff0c;如下对比不同交换方式的差异。 不同的交换方式 利用中间变量c a; 00C02533 8B 45 F8 mov eax,dword ptr [a] 0…...

【muduo源码分析】「阻塞」「非阻塞」「同步」「异步」

欢迎来到 破晓的历程的 博客 ⛺️不负时光&#xff0c;不负己✈️ 文章目录 引言何为「muduo库」安装muduo库阻塞、非阻塞、同步、异步数据准备数据准备 引言 从本篇博客开始&#xff0c;我会陆续发表muduo库源码分析的相关文章。感谢大家的持续关注&#xff01;&#xff01;…...

顶顶通呼叫中心中间件-机器人话术挂机后是否处理完成事件

前言 问题&#xff1a;机器人放音的过程中&#xff0c;如果用户直接挂机就会继续匹配下一个流程&#xff0c;如果匹配上的是放音节点&#xff0c;还会进行放音&#xff0c;那么在数据库表中就会多出一条放音记录。 解决方法 一、话术添加一个全局挂机节点 需要在话术中添加一…...

Springboot Mybatis 动态SQL

动态SQL <?xml version"1.0" encoding"UTF-8" ?> <!DOCTYPE mapperPUBLIC "-//mybatis.org//DTD Mapper 3.0//EN""https://mybatis.org/dtd/mybatis-3-mapper.dtd"> <mapper namespace"com.wzb.SqlImprove2024…...

ORM的了解

什么是ORM&#xff1f;为什么要用ORM&#xff1f;-CSDN博客 C高级编程&#xff08;99&#xff09;面向资源的设计思想&#xff08;ORM&#xff09;_c orm-CSDN博客 ORM:Object-Relational-Mapping 对象关系映射 -------------------------- 我想对数据库中的表A进行增删改…...

关于大模型的10个思考

9月28日&#xff0c;第四届“青年科学家50论坛”在南方科技大学举行&#xff0c;美国国家工程院外籍院士沈向洋做了《通用人工智能时代&#xff0c;我们应该怎样思考大模型》的主题演讲&#xff0c;并给出了他对大模型的10个思考。 以下是他10个思考的具体内容&#xff1a; 1…...

CFR( Java 反编译器)---> lambda 表达式底层实现机制

一、安装教程 CFR&#xff08;Class File Reader&#xff09;是一个流行的Java反编译器&#xff0c;它可以将编译后的.class文件或整个.jar文件转换回Java源代码。以下是CFR的下载和使用教程&#xff1a; 下载CFR 访问CFR的官方网站或GitHub仓库&#xff1a;CFR的最新版本和所…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...

基于PHP的连锁酒店管理系统

有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发&#xff0c;数据库mysql&#xff0c;前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码"&#xff1a;Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力&#xff0c;从金融交易到交通管控&#xff0c;这些关乎国计民生的关键领域…...

Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成

一个面向 Java 开发者的 Sring-Ai 示例工程项目&#xff0c;该项目是一个 Spring AI 快速入门的样例工程项目&#xff0c;旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计&#xff0c;每个模块都专注于特定的功能领域&#xff0c;便于学习和…...